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Global Particle Acceleration and Transport (GPAT) Model, Release 0.2

GPAT (Global Particle Acceleration and Transport) is a program for solving particle transport equations. It solves either
Parker’s transport equation for nearly isotropic particle distributions or the focused transport equations for anisotropic
particle distributions. The code uses the stochastic integration method to solve these equations. For details on the
algorithms implemented, please check out the theory section.
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2 INSTALLATION



CHAPTER

ONE

CONTACT US

If you’re beginning to use GPAT or have any questions, feel free to drop by the discussions page. For bug reports or to
request new features, you can also open a new issue.
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CHAPTER

TWO

INSTALL

2.1 Installation

This package uses a Multiple stream Mersenne Twister PRNG to generated the required random numbers. This package
uses FLAP to deal with comand line arguments. The FLAP pacakge is recommended to install using the FoBiS.py,
which is a building system for Fortran projects. Currently, the code can only be run on CPUs.

2.1.1 Requirments

• Programs that are commonly installed on HPC clusters

– Git: for cloning the code from GitHub

– CMake: 3.9.0 or higher

– GCC or Intel Fortran compilers.

– MPI: OpenMPI or MPICH. It should work with the others.

– HDF5: parallel version.

Tip: On Perlmutter@NERSC, you can load the modules by module load cpu cmake
cray-hdf5-parallel

• FoBiS.py: a building system for Fortran projects

– The installation wiki: https://github.com/szaghi/FoBiS/wiki/Install.

– It is recommended to use PyPI to install it: pip install FoBiS.py --user

– After installing, make sure that FoBiS.py is in your $PATH by including

export PATH=$HOME/.local/bin/:$PATH

in your .bashrc.

• Multiple stream Mersenne Twister PRNG: for generating pseudorandom numbers parallelly.

This program module splits single long period random number series from Mersenne Twister (MT)
into multiple (almost) independent streams.

– Download: http://theo.phys.sci.hiroshima-u.ac.jp/~ishikawa/PRNG/mt_stream_f90.tar.gz

– Load the same packages as listed above.
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tar zxvf mt_stream_f90.tar.gz
cd mt_stream_f90-1.11

Depending on the system type, you might need to modify FC in Makefile by hand. The default is ifort,
which is for the Intel compilers. For gfortran, please use the script config/gfortran_mt_stream.sh to
make the relevant changes in Makefile. First, copy the script to mt_stream_f90-1.11. Then,

./gfortran_mt_stream.sh

Note: If you are using newer versions of gfortran, there will be compiling errors. Therefore, we
need to update the source code slightly using config/fix_mt_stream.sh. First, copy the script to
mt_stream_f90-1.11. Then,

./fix_mt_stream.sh

– You can then compile the code by

make

– After compiling the code, you need to set the environment variable MT_STREAM to the installation directory.
For example,

export MT_STREAM=$HOME/local/mt_stream_f90-1.11

This environment variable will be used to compile the GPAT code.

Tip: You can put this into your .bashrc.

2.1.2 Download

git clone https://github.com/xiaocanli/stochastic-parker

2.1.3 Install

In the directory stochastic-parker,

mkdir build
cd build
cmake ..
make
make install

To turn on OpenMP parallelization, please use cmake -DUSE_OPENMP="On" ... To turn on AVX512 for the KNL
nodes, please also include -DUSE_AVX512="On".

Tip: On Perlmutter@NERSC, you can load the modules by module load cpu cmake cray-hdf5-parallel
python
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Note: Please use the same version of python as when installing FoBiS.py. Otherwise, FLAP will not be compiled
correctly.

Note: The code is not carefully optimized for the KNL nodes. Please use it in caution.

You can create a soft link of the executable stochastic-mhd.exec in the scratch filesystem for running the code.

2.1. Installation 7
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CHAPTER

THREE

USAGE

3.1 Usage

3.1.1 Introduction

The code uses MHD simulation results to evolve the particle distribution functions according to the transport equations.
The MHD quantities used include magnetic field, velocity field, and maybe plasma density.

Note: The plasma density might be used to calculate the local Alfvén speed.

In general, the modeling procedure includes

• Run the MHD simulations and get the MHD fields.

• Pre-process the MHD results to provide the input data for the GPAT model.

• Calculate the input parameters, including the spatial diffusion coefficient, parameters for evaluating the momen-
tum diffusion coefficient, parameters for evaluating the particle drift, etc.

• Modify the configuration for the transport modeling.

• Run the simulation.

• Analyze and visualize the results.

Below, we will use a 2D magnetic reconnection problem to illustrate the procedure in more detail.

3.1.2 Example: 2D Magnetic Reconnection

Here, we use a 2D reconnection problem solved with Parker’s transport equation as an example. The relevant code and
scripts are in examples/reconnection_2d.

Note: More examples will be included in the future.
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Run the MHD simulation

Please follow the instructions in athena_reconnection to run a reconnection simulation with two current sheets and
periodic boundary conditions. The input file for the Athena++ simulation is code/athinput.reconnection in
athena_reconnection. The simulation domain size is [0, 2] × [0,2]. The grid size is 1024 × 1024. The simulation
will last 20 Alfven-crossing time and produce 200 frames of data of the primary variables (reconnection.prim*.
athdf) in default.

Pre-process the MHD data

Instead of directly processing the data from different MHD codes (e.g., VTK files by Athena and HDF5 files by
Athena++) in the simulations, we will reorganize the MHD simulation outputs using Python scripts first. The ex-
ample scripts for Athena and Athena++ outputs are in mhd_data. There is a shell script reorganize_data.sh for
running the Python scripts with commandline arguments.

./reorganize_data.sh

which will include 2 ghost cells at each boundary according to the boundary conditions (periodic or open).

Note: Due to their stochastic nature, the pseudo particles can cross the local domain boundaries multiple times in a
short time, significantly increasing the MPI communication cost. We choose two ghost cells to enable particles to stay
in the local domain when they are near the boundaries. The two ghost cells also make calculating the gradients of the
fields easier at the boundaries. This could be improved in the future.

The script will generate the MHD fields (in bindary format) and the simulation configuration needed for the transport
modelings in bin_data under the MHD run directory.

• mhd_data_*: 𝑣𝑥, 𝑣𝑦, 𝑣𝑧, 𝜌, 𝐵𝑥, 𝐵𝑦, 𝐵𝑧, 𝐵, which have a size of 1028× 1028.

• rho_*: plasma density (1028× 1028)

• pre_*: plasma pressure (1028× 1028)

• mhd_config.dat: the MHD configuration information. See the function save_mhd_config in mhd_data/
reorganize_fields.py for the details of the configuration.

Calculate the input parameters

Before transport modeling, we need to calculate the parallel diffusion coefficient 𝜅‖ using the simulation normalizations
(length scale, magnetic field, plasma density, turbulence amplitude and anisotropy). There is a Python script sde.py
for doing that. The default parameters are ideal and similar to those used in1. Running the script will give a set of
parameters. We will only need Normed kappa parallel for now, which is 7.43592e-03 in default.

Note: The script needs plasmapy for the particle properties (e.g., mass and charge) and the calculation of different
plasma parameters.

1 Large-scale Compression Acceleration during Magnetic Reconnection in a Low- Plasma, Xiaocan Li, Fan Guo, Hui Li, and Shengtai Li, The
Astrophysical Journal Oct 2018
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Particle transport modeling

• Go the the directory (e.g., $SCRATCH/transport_test) where you link the executable stochastic-mhd.
exec.

• Create a directory config under transport_test and copy conf.dat and diffusion_reconnection.sh
in stochastic-parker/examples/reconnection_2d into config.

Note: The input parameters are given through two files: conf.dat and diffusion_reconnection.sh. You will
notice that there are many input parameters, some of which are through conf.dat, and the others are through command-
line arguments. The parameters in conf.dat are read by the code; the parameters in diffusion_reconneciton.sh
are used as the command-line arguments of the main program stochastic-mhd.exec. The command-line arguments
are from the earlier design. As the program evolves, more and more command-line arguments are needed, making it
tedious to run the simulation. In the future, it will be better to put some of the command-line arguments into a
configuration file (e.g., conf.dat).

• Change kpara0 in function stochastic () in diffusion_reconnection.sh to the value calculated above.

• Change mhd_run_dir and run_name (at the bottom of diffusion_reconnection.sh) to your choices.

To check all the available command-line arguments,

srun -n 1 ./stochastic-mhd.exec -h

Or you can check the comments in diffusion_reconnection.sh.

Note: Now, the input paramters are described at Input Parameters.

For this test run, you don’t need to change these input parameters. The default name of the transport run is
transport_test_run. We can request an interactive node to run the test, for example, on Perlmutter@NERSC,

salloc --nodes 1 --qos interactive --time 04:00:00 --constraint cpu --account=m4054
module load cpu cray-hdf5-parallel
./diffusion_reconnection.sh

It will take about one hour to run the simulation. The output files are in data/athena_reconnection_test/
transport_test_run.

Warning: The binary outputs of the particle distributions have been deprecated. The new outputs are saved in
the same HDF5 file fdists_****.h5. The corresponding analysis scripts need to be updated to read the HDF5
outputs.

• fdpdt-*.dat: the energization rate (only the compression is included for now).

• fp-*.dat: the global momentum distributions.

• fp_local-*.dat: the local momentum distributions.

• fxy-*.dat: the local particle densities in different energy bands. They are similar to fp_local-*.dat but
only for a few energy bands.

The outputs include

• quick.dat: the parameters to diagnose the simulation status during runtime.

3.1. Usage 11

mailto:Perlmutter@NERSC


Global Particle Acceleration and Transport (GPAT) Model, Release 0.2

• pmax_global.dat: the maximum momentum at the same time frames in quick.dat.

• fdists_****.h5: particle distributions, including the global distribution, local distributions, and the rel-
evant bins. The dimensions of the distributions are controlled in the input file conf.dat: npp_global,
nmu_global, dump_interval*, pmin*, pmax**, npbins*, nmu*, rx*, ry*, rz*. When running Parker’s
transport, nmu_global and nmu* defaults to 1.

fdists_****.h5 contains the following quantities.

• fglobal: global particle distribution with a size of [npp_global, nmu_global]

• pbins_edges_global: global momentum bins edges with a size of [npp_global+1]

• mubins_edges_global: global cosine of pitch-angle bins edges with a size of [nmu_global+1]

• flocal*: local particle distributions with a size of [nz_mhd/rx*, ny_mhd/ry*, nz_mhd/rz*, npbins*, nmu*],
where nx_mhd, ny_mhd, and nz_mhd are the dimensions of the MHD simulation. In this 2D example, nz_mhd=1,
and the first dimension of flocal* is 1.

• pbins_edges*: local momentum bins edges with a size of [npbins*+1]

• mubins_edges*: local cosine of pitch-angle bins edges with a size of [nmu*+1]

Visualize the results

The relevant files for plotting are in examples/reconnection_2d/vis. Please copy the files to a directory of your
choice for data analysis, for example, $SCRATCH/transport_test/python. Please also copy python/sde_util.py
into the same directory. We will use the Jupyter notebook transport_test.ipynb to plot the results. The notebook
needs information about the MHD simulation (mhd_runs_for_sde.json) and the SDE run (spectrum_config.
json).

Note: The two JSON files will keep tracking the information of MHD runs and the SED runs for each MHD simulation,
respectively. We recommend keeping the records in this kind of JSON file.

For mhd_runs_for_sde.json, please change run_dir to your reocnnection simulation directory. In
spectrum_config.json,

• run_name: a unique name for the SDE run starting from the MHD run name

• e0: the energy normalization in keV (default: 10 keV)

• xlim_e, ylim_e: the limites for the energy spectrum plots

The rest of the parameters in spectrum_config.json are not commonly used and will be deprecated in the future.

After running the Jupyter Notebook, you will get the time evolution of the global energy spectrum shown below. The
different colors indicate the spectra at different time frames.
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We can also get the spatial distributions of local particle distributions at the final time step. The four left panels show the
electron distributions in four energy bands with corresponding scaling factors. The rightmost panel shows the vertical
through the center of the reconnection region at 𝑥 = 0.

Both the spectra and the spatial distributions show that the acceleration is weak. The reason is that the compression
in the MHD simulation is not strong. The acceleration will be stronger in MHD simulations with higher Lundquist
numbers and resolutions.

Note: The notebook includes the script to read the global and local particle distributions. You can perform further
analysis of the particle distributions.

3.1. Usage 13
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3.1.3 What are not included in this description?

The code currently supports many functionalities that are not included here. Those will be gradually included in future
updates of the documentation, for example,

• Different particle injection methods (e.g., spatially dependent injection)

• Particle-splitting techniques

• Particle tracking

• Momentum diffusion

• Spatially dependent turbulence properties

• 3D simulations

• Spherical coordinates

3.2 Input Parameters

The input parameters are mostly in script diffusion*.sh (e.g., diffusion_reconnection.sh for the 2D recon-
nection example). A few others are in conf*.dat (e.g., conf.dat for the 2D reconnection example). The input
parameters are explained below.

3.2.1 diffusion.sh

• MACHINE: either Frontera or Perlmutter. Perlmutter is the default.

• quota_hour: the maximum wall time in hours. The code dump restart files if the simulation is not finished
when the wall time is reached (30 mins before that in the code). The restart files are saved in the restart
sub-directory under the diagnostic directory. These are data files particles_*.h5 for particle data, mtss.
mpi_rank.thread_id for the state of the random number generators, particle_module_stare_*.h5 for the
state of the particle module, and latest_restart for the last time frame before duming restart files.

• restart_flag: whether the simulation is a restart from previous simulations. .false. is the default, which
means it is not a restart. .true.means it is a restart. When it is a restart, the code will read the particle data and
random_number_generater from the previous simulation and continue the simulation from the last time step.

• conf: the name of the configuration file. conf.dat is the default.

• mhd_config_filename: the name of the MHD configuration file. mhd_config.dat is the default.

• focused_transport: whether to solve the focused transport equation. .false. is the default, which means
solving the Parker transport equation.

• mpi_size: the total number of MPI processes.

• ntasks_per_node: the number of MPI processes per node.

• size_mpi_sub: the size of an MPI sub-communicator. 1 is the default, which means there is only one MPI
communicator (MPI_COMM_WORLD). If not 1, the total number of MPI processes must be divisible by
size_mpi_sub. The MPI communications are done within each sub-communicator. In this way, we don’t
need to divide the domain into too many sub-domains, which is not efficient for MPI communications. To get
the global properties (e.g., global particle spectrum), we will use the cross-communicators.

• nptl: the total number of particles for one MPI process.

• nptl_max: the maximum number of particles for one MPI process. If the number of particles exceeds nptl_max,
we will stop injecting more particles or splitting particles. Typically, we can choose up to 10 million.
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• ts: the start time step.

• te: the end time step.

• tmax_mhd: the maximum time frame for the MHD fields. Typically, tmax_mhd is larger than te, so the
transport modeling will have enough MHD fields to use. When tmax_mhd is smaller than te, there are two
cases: 1) when single_time_frame=1 (discussed below), the code will keep running until te; 2) when
single_time_frame=0, the code will stop reading MHD fields after tmax_mhd and use the last MHD fields
for the rest of the simulation.

• single_time_frame: whether to use only one-time frame. 0 is the default, which means using multiple time
frames (from ts to te). 1 means using only one time frame (ts). Then, the simulation will run te-ts+1 time
steps using the same MHD fields.

• time_interp: whether to interpolate in-between time frames. 1 is the default, which means interpolation. 0
means no interpolation.

• dist_flag: the initial particle distribution. 0 is the default, which means Maxwellian. 1 means delta function.
2 means power-law.

• power_index: the power-law index for the initial momentum distribution if dist_flag=2.

• split_flag: whether to split particles when they reach certain momentum. 0 is the default, which means no
splitting. 1 means splitting.

• split_ratio: the momentum increase ratio for particle splitting. Assuming the particle’s initial momentum is
p0, the particle will be splitted into two particles once the particle momentum reaches p0*split_ratio. The
rul of thumb is to set split_ratio to be around 21/𝛾 , where 𝛾 is the power-law index for the particle momentum
distribution.

• pmin_split: the minimum momentum (in p0) to start splitting particles. Instead of starting from p0, we can
start from a higher momentum to avoid splitting too many particles at low momentum. It is particularly important
when injecting Maxwellian particles, where the number of particles is large at low momentum.

• local_dist: whether to diagnose local particle distribution.

• dump_escaped_dist: whether to dump the escaped particle distributions, either .true or .false. If .
false., the particles will be removed once they escape from the boundaries. Otherwise, the escaped particles
will be accumulated in one MHD data interval. The distributions of the escaped particles are stored in files
escaped_dist_*.h5. They have the same grid sizes as the local particle distributions but with one dimension
less. For example, if we have a 3D simulation, the escaped particle distributions will be 2D for the low-x, high-x,
low-y, high-y, low-z, and high-z boundaries.

Warning: The escaped particle distributions are only dumped when local_dist=.true.. When local_dist=.
false., the escaped particle distributions will not be dumped event if dump_escaped_dist=.true..

• dump_escaped: whether to dump the escaped particles. dump_escaped_dist has to be .true. for this to
work. If dump_escaped_dist=.false., the raw data of the escaped particles will be dumped. Otherwise,
only the distributions of the escaped particles will be dumped. Note that the raw data of the escaped particles
can be large. It is not recommended to dump the raw data of the escaped particles unless you want to analyze
the raw data in detail.

• track_particle_flag: whether to track particles. .false. is the default, which means not tracking particles.
.true. means tracking particles. When tracking particles, we will select nptl_selected particles with the
highest energy, rerun the simulation, and output the trajectories of these particles.

• particle_tags_file: the file name for the particle tags. It is used to select the particles to track. The file
tags_selected_*.h5 has one dataset tags. The dataset is a 1D array of integers. These tags can be obtained
from analyzing the particle data. For example, we can select the particles with the highest energy or particles in
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certain regions and output their tags to the file tags_selected_*.h5. The file is located in the same directory
as the diagnostic directory.

• nsteps_interval: the steps interval to track particles. If it is 1, we will track particles at every time step. If
it is 10, we will track particles at every 10 steps. Particles can be evolves for millions of time steps. It is not
recommended to track particles at every time step unless you want to analyze the particle trajectories in great
detail.

• inject_new_ptl: whether to inject new particles at every step. The values are .true. or .false.. .true.
means injecting new particles at every MHD step. .false. means only injecting particles at the beginning.

• inject_same_nptl: whether to inject the same number of particles every step. .true. is the default,
which means injecting the same number of particles. .false. means injecting a different number of par-
ticles every step. Then, the number of injected particles depends on how particles are injected (see below).
inject_same_nptl only works when inject_new_ptl=.true..

• tmax_to_inject: the maximum time frame to inject particles. It is used to stop injecting particles after
some time. It is useful, for example, when we want to run simulations for a long time but only inject parti-
cles at the beginning. Note that tmax_to_inject should be larger than ts. Note that it only works when
inject_new_ptl=.true..

• inject_part_box: whether to inject particles in part of the simulation box. .false. is the default, which
means injecting particles in the whole box. .true. means injecting particles in part of the box.

• ptl_xmin: the minimum x coordinate for particle injection. It is the absolute coordinate.

• ptl_xmax: the maximum x coordinate for particle injection.

• ptl_ymin: the minimum y coordinate for particle injection.

• ptl_ymax: the maximum y coordinate for particle injection.

• ptl_zmin: the minimum z coordinate for particle injection.

• ptl_zmax: the maximum z coordinate for particle injection.

• inject_large_jz: whether to inject particles where jz is large. .false. is the default, which means not
injecting particles where jz is large. .true. means injecting particles where jz is large.

• jz_min: the minimum jz for injection when inject_large_jz=.true.. It is to make sure that the particles
are only injected in regions with large jz. It is useful for reconnection simulations, where we might want to
inject particles in the reconnection region. Depending on the simulation, we might need to adjust this value
because each simulation has a different jz range or different normalizations. Note that inject_large_jz=.
true., inject_large_absj=.true., inject_large_db2=.true., inject_large_divv=.true., and
inject_large_rho=.true. are exclusive. Only one of them can be .true..

• ncells_large_jz_norm: the normalization for the number of cells with large jz. It is used to deter-
mine the number of particles to inject. The number of particles to inject is nptl*ncells(jz>jz_min)/
ncells_large_jz_norm, where ncells(jz>jz_min) is the number of cells with jz larger than jz_min.

• inject_large_absj: whether to inject particles where |j| is large. .false. is the default, which means not
injecting particles where |j| is large. .true. means injecting particles where |j| is large.

• absj_min: the minimum |j| for injection when inject_large_absj=.true.. It is to make sure that the parti-
cles are only injected in regions with large |j|.

• ncells_large_absj_norm: the normalization for the number of cells with large |j|. It is used to deter-
mine the number of particles to inject. The number of particles to inject is nptl*ncells(|j|>absj_min)/
ncells_large_absj_norm, where ncells(|j|>absj_min) is the number of cells with |j| larger than
absj_min.

• inject_large_db2: whether to inject particles where turbulence amplitude (db2) is large. .false. is the
default, which means not injecting particles where db2 is large. .true. means injecting particles where db2 is
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large. When inject_large_db2=.true., the code needs to read an additional file deltab*.dat to get the
turbulence amplitude.

• db2_min: the minimum db2 for injection when inject_large_db2=.true.. It is to make sure that the particles
are only injected in regions with large db2. It is useful for reconnection simulations, where we might want to
inject particles in the reconnection region, where reconnection-driven turbulence can be intense.

• ncells_large_db2_norm: the normalization for the number of cells with large db2. It is used to deter-
mine the number of particles to inject. The number of particles to inject is nptl*ncells(db2>db2_min)/
ncells_large_db2_norm, where ncells(db2>db2_min) is the number of cells with db2 larger than
db2_min.

Note: The functionality of inject_large_db2 is not fully tested. It is not recommended to use it for now. Addi-
tionally, we need to understand spatially dependent turbulence amplitude better.

• inject_large_divv: whether to inject particles where flow compression divv is negatively large. .false. is
the default, which means not injecting particles where divv is negatively large. .true.means injecting particles
where divv is negatively large.

• divv_min: the minimum divv for injection when inject_large_divv=.true.. This is to make sure that the
particles are only injected in regions with large volumes. It is useful for reconnection or shock simulations, where
we might want to inject particles near regions with strong flow compression.

• ncells_large_divv_norm: the normalization for the number of cells with large divv. It is used to determine
the number of particles to inject. The number of particles to inject is nptl*ncells(|divv|>|divv_min|)/
ncells_large_divv_norm, where ncells(|div|>|divv_min|) is the number of cells with |divv| larger
than |divv_min|.

• inject_large_rho: whether to inject particles where density is large. .false. is the default, which means
not injecting particles where density is large. .true. means injecting particles where density is large.

• rho_min: the minimum density for injection when inject_large_rho=.true.. It is to make sure that the
particles are only injected in regions with large density.

• ncells_large_rho_norm: the normalization for the number of cells with large density. It is used to deter-
mine the number of particles to inject. The number of particles to inject is nptl*ncells(rho>rho_min)/
ncells_large_rho_norm, where ncells(rho>rho_min) is the number of cells with density larger than
rho_min.

• dpp_wave: whether to include momentum diffusion due to wave scattering. 0 is the default, which means not
including momentum diffusion due to wave scattering. 1 means including momentum diffusion due to wave
scattering.

• dpp_shear: whether to include momentum diffusion due to flow shear. 0 is the default, which means not
including momentum diffusion due to flow shear. 1 means including momentum diffusion due to flow shear.

• weak_scattering: whether particle scattering is in the weak-scattering regime. 1 is the default, which means
the weak-scattering regime. 0 means the strong-scattering regime.

• deltab_flag: whether to have spatially dependent turbulence amplitude. 0 is the default, which means that
the turbulence amplitude is spatially uniform. 1 means having spatially dependent turbulence amplitude. When
deltab_flag=1, the code needs to read an additional file deltab*.dat to get the turbulence amplitude.

• correlation_flag: whether to have spatially dependent turbulence correlation length. 0 is the default, which
means that the turbulence correlation length is spatially uniform. 1means having spatially dependent turbulence
correlation length. When correlation_flag=1, the code needs to read an additional file lc*.dat to get the
turbulence correlation length.
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Note: The functionalities of deltab_flag and corrlation_flag are not fully tested. It is not recommended to use
them for now. Additionally, we need to understand spatially dependent turbulence amplitude and correlation length
better.

• ndim_field: the dimension of the field. The values can be 1, 2, or 3. 1 means 1D simulation, but it is not fully
tested.

• drift_param1: the parameter 1 for particle drift. It is used to determine the drift velocity. See the Theory
section for details.

• drift_param2: the parameter 2 for particle drift. It is used to determine the drift velocity. See the Theory
section for details.

• charge: the charge of the particle in unit charge. -1 is the default, which means electron.

• spherical_coord: whether the grid is spherical. 0 is the default, which means the grid is Cartesian. 1 means
the grid is spherical.

• uniform_grid: whether the grid is uniform. 1 is the default, which means the grid is uniform. 0 means the
grid is non-uniform. Then, we need to the coordinates of the grid points in files xpos.dat, ypos.dat, and
zpos.dat, located in the same directory as the MHD configuration file.

• check_drift_2d: whether to check particle drift in 2D simulations. 0 is the default, which means not checking
particle drift in 2D simulations. 1means checking particle drift in 2D simulations. It is useful for 2D simulations,
where we can check how much particles drift along the out-of-plane direction.

• particle_data_dump: whether to dump particle data. 0 is the default, which means not dumping particle data.
1 means dumping particle data. When dumping particle data, the code will output the particle data at every
output time step. The particle data are stored in files particles_*.h5. Since particle data can be large, it is not
recommended to dump particle data unless you want to analyze the particle data.

• include_3rd_dim: whether to include transport along the 3rd-dim in 2D simulations. 0 is the default, which
means not including transport along the 3rd-dim in 2D simulations. 1 means including transport along the 3rd-
dim in 2D simulations. It is useful for 2D simulations, where we can check how much particles transport along
the out-of-plane direction.

• acc_by_surface: whether the acceleration region is separated by a surface. 0 is the default, which means the
acceleration region is not separated by a surface. 1means the acceleration region is separated by a surface. Then,
we need to specify the surface file name and the normal direction of the surface to get the 2D surfaces that separate
the acceleration region. The surface file name is specified by surface_filename1 and surface_filename2.
The normal direction of the surface is specified by surface_norm1 and surface_norm2. The surface normal
direction can be +x, -x, +y, -y, +z, or -z. It is useful when we want to selectively turn on/off particle accel-
eration in certain regions. For example, we can turn on particle acceleration only in the reconnection region or
termination shock region in flare simulations. To get the 2D surfaces separating different acceleration regions,
we need to write our own scripts to look into the MHD simulation data.

Note: The functionality of acc_by_surface is not fully tested. It is not recommended to use it for now. Example
scripts to get the 2D surfaces separating different acceleration regions will be provided later.

• surface2_existed: whether the second surface exists. 0 is the default, which means the second surface does
not exist. Then, we only have two regions. 1 means the second surface exists. Then, we will have acceleration
regions separated by these two surfaces.

• varying_dt_mhd: whether the time interval for MHD fields is varying. 0 is the default, which means the time
interval for MHD fields is uniform. 1 means the time interval for MHD fields is varying. It is useful when the
MHD simulation has varying time intervals. For example, the MHD simulation might have a large time interval
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at the beginning and a small time interval later. Then, we can use varying_dt_mhd=1 to use the varying time
interval for MHD fields. When varying_dt_mhd=1, the code needs to read an additional file time_stamps.
dat to get the time stamps for each MHD frame. The file is located in the same directory as the MHD data
files.

Then, the script will modify the configuration file conf.dat. The parameters in conf.dat are explained below.
Additionally, a few other parameters are modified in this script for more flexibility.

• tau0_scattering: the scattering time for initial particles. It is only used for momentum diffusion due to
wave scattering. It is not used for Parker transport. The parameters are calculated based on the initial particle
momentum and turbulence properties in sde.py.

• duu0: the normalization for pitch-angle diffusion coefficient. It is only used in the focused transport equation.
The parameters are calculated based on the initial particle momentum and turbulence properties in sde.py.

• particle_v0: the particle speed/velocity normalization. It is only used in the focused transport equation. The
parameters are calculated based on the initial particle momentum and turbulence properties in sde.py.

• dir_mhd_data: the directory for MHD simulation data.

• diagnostic_directory: the directory for diagnostics data.

3.2.2 conf.dat

• b0: initial magnetic field strength (deprecated).

• p0: initial particle momentum. Its value is arbitrary. 0.1 is typically used so that the particle momentum is not
too small or too large. Note that p0 corresponds to particles with the input diffusion coefficients.

• pmin: the minimum particle momentum. It is used when injecting particles and when calculating the global
particle spectrum. It is typically set to 1E-2.

• pmax: the maximum particle momentum. It is used when injecting particles and when calculating the global
particle spectrum. It is typically set to 1E1.

• momentum_dependency: whether the diffusion coefficients depend on particle momentum. 1 is the default,
which means the diffusion coefficients depend on particle momentum. 0 means the diffusion coefficients do not
depend on particle momentum.

• pindex: the power-law index for the momentum dependency of the diffusion coefficients. It is only used when
momentum_dependency=1. It is typically set to 3-5/3=4/3=1.3333333, where 5/3 is the turbulence spectral
slope for the Kolmogorov spectrum. It can be modified in difffusion.sh when using different turbulence
models.

• mag_dependency: whether the diffusion coefficients depend on magnetic field strength. 1 is the default, which
means the diffusion coefficients depend on magnetic field strength. 0 means the diffusion coefficients do not
depend on magnetic field strength.

• kpara0: the normalization for the parallel diffusion coefficient. It is calculated based on the initial particle
momentum, magnetic field, and turbulence properties in sde.py.

• kret: the ratio of the perpendicular diffusion coefficient to the parallel diffusion coefficient. It is typically set to
less than 0.1.

• dt_min: the minimum time step allowed to avoid infinite time step.

• dt_min_rel: the minimum relative time step w.r.t. one field time interval. dt_min is set to dt_min_rel times
the time interval for MHD fields if the latter is larger than dt_min.

Note: The time step is adaptive. It is calculated based on the particle momentum, magnetic field, pitch angle, and
diffusion coefficients. The rule of thumb for dt_min_rel is 1E-6. For MHD simulations with lower resolution, it can
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be up to 1E-4. For MHD simulations with very high resolutions, a large dt_min_rel might lead to wrong results in
these high-resolution simulations, while a small dt_min_rel might lead to a long simulation time. We suggest doing
a convergence test to get the optimal value.

• dt_max_rel: the maximum relative time step w.r.t. one field time interval to avoid a time step too large, which
could cause the particles to jump over multiple grid cells.

• npp_global: the number of momentum bins for the global particle spectrum.

• nmu_global: the number of pitch-angle bins for global particle distributions.

• dump_interval1: the interval to dump local particle distributions. It is only used when local_dist=1 in
diffusion.sh.

• pmin1: the minimum particle momentum for local particle distributions.

• pmax1: the maximum particle momentum for local particle distributions.

• npbins1: the number of momentum bins for local particle distributions.

• nmu1: the number of pitch-angle bins for local particle distributions.

• rx1: reduced factor along the x direction for local particle distributions. For every rx1 grid cell along the x
direction, we will have one bin for local particle distributions.

• ry1: reduced factor along the y direction for local particle distributions. For every ry1 grid cell along the y
direction, we will have one bin for local particle distributions.

• rz1: reduced factor along the z-direction for local particle distributions. For every rz1 grid cell along the z
direction, we will have one bin for local particle distributions.

Note: The other three local distributions are similar. We can adjust the number of bins and reduce factors to get
different distributions. For example, we can get a distribution with higher resolution in the momentum space and lower
resolution in the pitch-angle space by increasing npbins and decreasing nmu. Or we can get distributions with higher
momentum resolution but coarse spatial resolution by increasing rx, ry, and rz.

Note: We only dump local distributions every few MHD output intervals. When dump_interval is larger than the
number of MHD outputs, it will not dump the distribution. In this way, we don’t have to dump all four kinds of local
distributions.

• acc_region_flag: whether to turn on particle acceleration in certain regions. 0 is the default, which means
turning on particle acceleration in the entire region. 1 means turning on particle acceleration in certain regions.
When acc_region_flag=1, we need to specify the acceleration region. The acceleration region is specified by
acc_xmin, acc_xmax, acc_ymin, acc_ymax, acc_zmin, and acc_zmax. These are the relative values from 0
to 1. The acceleration region is a box with the minimum coordinate (acc_xmin, acc_ymin, acc_zmin) and the
maximum coordinate (acc_xmax, acc_ymax, acc_zmax). It is useful when we want to selectively turn on/off
particle acceleration in certain regions. For example, we can turn on particle acceleration only in the reconnection
region or termination shock region in flare simulations. If we set acc_xmax or acc_ymax or acc_zmax to
negative values, the acceleration in the entire simulation domain will be turned off.

• pbcx: the boundary condition for particles along the x direction. 0 is the default, which means periodic boundary
condition. 1 means open boundary condition.

• pbcy: the boundary condition for particles along the y direction. 0 is the default, which means periodic boundary
condition. 1 means open boundary condition.

20 Chapter 3. Usage



Global Particle Acceleration and Transport (GPAT) Model, Release 0.2

• pbcz: the boundary condition for particles along the z direction. 0 is the default, which means periodic boundary
condition. 1 means open boundary condition.

Note: Additional boundary conditions should be included in the future, such as reflecting boundary condition.

• mpi_sizex: the number of MPI processes along the x direction. It is default to 1 when size_mpi_sub=1.
Otherwise, mpi_sizex*mpi_sizey*mpi_sizez should be equal to size_mpi_sub.

• mpi_sizey: the number of MPI processes along the y direction. It is default to 1 when size_mpi_sub=1.
Otherwise, mpi_sizex*mpi_sizey*mpi_sizez should be equal to size_mpi_sub.

• mpi_sizez: the number of MPI processes along the z direction. It is default to 1 when size_mpi_sub=1.
Otherwise, mpi_sizex*mpi_sizey*mpi_sizez should be equal to size_mpi_sub.

Note: When size_mpi_sub>1 in diffusion.sh. mpi_sizex*mpi_sizey*mpi_sizez should be equal to
size_mpi_sub. Otherwise, the code will stop.
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CHAPTER

FOUR

THEORY

4.1 Introduction

The GPAT code was initially developed by Fan Guo1. It has been updated over the years. Recent papers using this
code can be found at Publications. The code solves particle transport equations, including Parker’s transport equation
and focused transport equation, using the stochastic integration method. It is supposed to be used for studying particle
acceleration and transport at scales much larger than the kinetic scales.

The code solves the equation using the stochastic integration method since the Fokker-Planck form of the transport
equation is equivalent to a set of the stochastic differential equations (SDEs) of Ito type2. The SDEs are solved using
a large number of pseudo particles.

It uses MHD simulation data (magnetic field, velocity, density, etc.) as background to evolve the transport equations. It
has been used in studying particle acceleration and transport in magnetic reconnection, solar flares, and solar eruption
regions.

The simulations will produce spatially and temporally dependent energy spectra and maps of energetic particles. See
Usage for how to get these from MHD simulation outputs.

4.2 Parker’s Transport Equation

4.2.1 The Equation Solved

Parker’s transport equation

𝜕𝑓

𝜕𝑡
+ (𝑉 + 𝑉 𝑑) · ∇𝑓 − 1

3
∇ · 𝑉 𝜕𝑓

𝜕 ln 𝑝
= ∇ · (𝜅∇𝑓) +𝑄, (4.1)

where 𝑓(𝑥𝑖, 𝑝, 𝑡) is the particle distribution function as a function of the particle position 𝑥𝑖, momentum 𝑝 (isotropic
momentum assumed), and time 𝑡; 𝜅 is the spatial diffusion coefficient tensor, 𝑉 is the bulk plasma velocity, 𝑉 𝑑 is
the particle drift, and 𝑄 is the source. In general, 𝑉 can be obtained directly from the MHD simulations, 𝑉 𝑑 and
𝜅 both depend on the vector magnetic field, and 𝑄 could depend on many plasma properties (e.g., number density,
current density, and compression). 𝜅 also depends on the turbulence properties (e.g., amplitude, spectral slope, and
anisotropy). The diffusion coefficient tensor is given by

𝜅𝑖𝑗 = 𝜅⊥𝛿𝑖𝑗 −
(𝜅⊥ − 𝜅‖)𝐵𝑖𝐵𝑗

𝐵2
,

where 𝜅‖ and 𝜅⊥ are the parallel and perpendicular diffusion coefficients. Here 𝜅‖ can be calculated from the quasi-
linear theory [Jokipii71]. Assuming that magnetic turbulence is well developed and has an isotropic power spectrum

1 https://ui.adsabs.harvard.edu/abs/2010ApJ. . . 725..128G/abstract
2 https://en.wikipedia.org/wiki/Fokker%E2%80%93Planck_equation
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𝑃 ∼ 𝑘−5/3, the resulting 𝜅‖ ∼ 𝑝4/3 when the particle gyroradius is much smaller than the correlation length of
turbulence. In particular, we use the following expression for 𝜅‖ [Giacalone99],

𝜅‖(𝑣) =
3𝑣3

20𝐿𝑐Ω2
0𝜎

2
csc

(︂
3𝜋

5

)︂[︃
1 +

72

7

(︂
Ω0𝐿𝑐

𝑣

)︂5/3
]︃

≈ 1.622
𝑣4/3𝐿

2/3
𝑐

Ω
1/3
0 𝜎2

(4.2)

where 𝑣 is the particle speed, 𝐿𝑐 is the turbulence correlation length, Ω0 is the particle gyrofrequency, and
𝜎2 =

⟨︀
𝛿𝐵2

⟩︀
/𝐵2

0 is the normalized wave variance of turbulence. Reference [Giacalone99] gave a derivation of
equ_kpara_qlt . Below is summary of it with some missing details. The velocity-dependent parallel diffusion co-
efficient is

𝜅‖(𝑣) =
𝑣2

4

∫︁ 1

0

(1− 𝜇2)2𝑑𝜇

𝐷𝜇𝜇

where 𝜇 is cosine of the pitch angle and 𝐷𝜇𝜇 the pitch-angle diffusion coefficient. 𝐷𝜇𝜇 is related to magnetic field
fluctuations.

𝐷𝜇𝜇 =
𝜋

4
Ω0(1− 𝜇2)

𝑘res𝑃 (𝑘res)

𝐵2
0

where Ω0 is particle gyrofrequency, 𝑘res = |Ω0/𝑣𝜇| is the resonant wavenumber. The above equation is strictly ap-
plicable only for the case of 1D turbulence in which the wavevectors are aligned with the mean field. For anisotropic
turbulence (e.g., 2D + slab), only the slab turbulence (about 20% of all turbulent fluctuations [Bieber96]) affect particle
parallel transport [Florinski03]. The turbulence power is usually expressed as

𝑃 (𝑘) =

⟨︀
𝛿𝐵2

⟩︀
1 + (𝑘𝐿𝑐)𝛾

[︃∫︁ 𝑘max

𝑘min

𝑑𝑘

1 + (𝑘𝐿𝑐)𝛾

]︃−1

where 𝑘min and 𝑘max are the smallest and largest wavenumbers in the system, 𝐿𝑐 is the turbulence correlation length,
and 𝛾 is the turbulence spectrum index (e.g., 5/3). For 𝑘min ≪ 1/𝐿𝑐 ≪ 𝑘max, the integral in the above equation can be
taken from 0 to ∞. From the table of integral,

∫︀∞
0

𝑥𝜇−1𝑑𝑥/(1 + 𝑥𝜈) = 𝜋 csc(𝜇𝜋/𝜈)/𝜈. Then,

𝑃 (𝑘) =

⟨︀
𝛿𝐵2

⟩︀
𝐿𝑐

1 + (𝑘𝐿𝑐)𝛾
[(𝜋/𝛾) csc(𝜋/𝛾)]

−1

The parallel diffusion coefficient is

𝜅‖(𝑣) =
𝑣2 csc(𝜋/𝛾)

Ω2
0𝜎

2𝛾𝐿𝑐

∫︁ 1

0

(1− 𝜇2)|𝑣𝜇|
(︂
1 +

⃒⃒⃒⃒
Ω0

𝑣𝜇

⃒⃒⃒⃒
𝐿𝑐

)︂𝛾

𝑑𝜇

=
𝑣3 csc(𝜋/𝛾)

4Ω2
0𝜎

2𝛾𝐿𝑐

[︂
1 +

(︂
Ω0𝐿𝑐

𝑣

)︂𝛾
8

(2− 𝛾)(4− 𝛾)

]︂
where we assume 𝑣 > 0 and 𝛾 < 2. When 𝛾 = 5/3 (Kolmogorov), we can get equ_kpara_qlt. (What will happen
when 𝛾 > 2?).

Test-particle simulations have suggested that 𝜅⊥/𝜅‖ is about 0.02-0.04 and is nearly independent of particle energy
[Giacalone99]. There is also observational evidence suggesting that 𝜅⊥/𝜅‖ can be quite large [Dwyer97] [Zhang03].

The Parker transport equation can be solved by integrating the stochastic differential equation corresponding to the
Fokker–Planck form of the transport equation [Zhang99] [Florinski09] [Pei10] [Kong17]. Neglecting the source term
𝑄 in equ_parker and assuming 𝐹 = 𝑓𝑝2,

𝜕𝐹

𝜕𝑡
= −∇ · [(∇ · 𝜅+ 𝑉 )𝐹 ] +

𝜕

𝜕𝑝

[︁𝑝
3
∇ · 𝑉 𝐹

]︁
+∇ · (∇ · (𝜅𝐹 )),

which is equivalent to a system of stochastic differential equations (SDEs) of the Ito type.
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4.2.2 1D & 2D Models

In a 1D model, the Fokker-Planck form of the transport is equivalent to the SDEs

𝑑𝑋 =

(︂
𝜕𝜅

𝜕𝑥
+ 𝑉𝑥

)︂
𝑑𝑠+

√
2𝜅𝑑𝑊𝜎(𝑠),

𝑑𝑝 = −𝑝

3

𝜕𝑉𝑥

𝜕𝑥
𝑑𝑠,

Note: In a 1D or 2D model, the particle drift 𝑉 𝑑 is out of the simulation plane and is not considered here.

where 𝑑𝑊𝜎 is the normalized distributed random number with mean zero and variance
√
∆𝑡, and ∆𝑡 is the time step

for stochastic integration. This corresponds to a Wiener process. Numerical approximation is often used for the Wiener
process to replace the normal distribution. We use a uniform distribution in [−

√
3,
√
3] in the code.

Note: Future tests should be included to test this method thoroughly.

In a 2D model, the corresponding SDEs are

𝑑𝑋 = (∇ · 𝜅+ 𝑉 )𝑑𝑠+
∑︁
𝜎

𝛼𝜎𝑑𝑊𝜎(𝑠),

𝑑𝑝 = −𝑝

3
(∇ · 𝑉 )𝑑𝑠,

where
∑︀

𝜎 𝛼
𝜇
𝜎𝛼

𝜈
𝜎 = 2𝜅𝜇𝜈 .

𝛼1 =

(︂√
2𝜅⊥
0

)︂
, 𝛼2 =

(︂
0√
2𝜅⊥

)︂
, 𝛼3 =

√︁
2(𝜅‖ − 𝜅⊥)

(︂
𝐵𝑥/𝐵
𝐵𝑦/𝐵

)︂
.

The parameters used at particle locations are calculated from 𝑣𝑥, 𝑣𝑦 , 𝐵𝑥, 𝐵𝑦 , ∇ · 𝑣, 𝜕𝐵𝑥/𝜕𝑥, 𝜕𝐵𝑥/𝜕𝑦, 𝜕𝐵𝑦/𝜕𝑥, and
𝜕𝐵𝑦/𝜕𝑦, which are all obtained from the MHD simulations. We interpolate these parameters to the particle positions
and then calculate the other required parameters:

𝜕𝜅𝑥𝑥

𝜕𝑥
=

𝜕𝜅⊥

𝜕𝑥
−

𝜕(𝜅⊥ − 𝜅‖)

𝜕𝑥

𝐵2
𝑥

𝐵2
− 2(𝜅⊥ − 𝜅‖)

𝜕𝐵𝑥

𝜕𝑥 𝐵𝑥𝐵 − 𝜕𝐵
𝜕𝑥𝐵

2
𝑥

𝐵3
,

𝜕𝜅𝑦𝑦

𝜕𝑦
=

𝜕𝜅⊥

𝜕𝑦
−

𝜕(𝜅⊥ − 𝜅‖)

𝜕𝑦

𝐵2
𝑦

𝐵2
− 2(𝜅⊥ − 𝜅‖)

𝜕𝐵𝑦

𝜕𝑦 𝐵𝑦𝐵 − 𝜕𝐵
𝜕𝑦 𝐵

2
𝑦

𝐵3
,

𝜕𝜅𝑥𝑦

𝜕𝑥
= −

𝜕(𝜅⊥ − 𝜅‖)

𝜕𝑥

𝐵𝑥𝐵𝑦

𝐵2
− (𝜅⊥ − 𝜅‖)

(︁
𝜕𝐵𝑥

𝜕𝑥 𝐵𝑦 +𝐵𝑥
𝜕𝐵𝑦

𝜕𝑥

)︁
𝐵 − 2𝐵𝑥𝐵𝑦

𝜕𝐵
𝜕𝑥

𝐵3
,

𝜕𝜅𝑥𝑦

𝜕𝑦
= −

𝜕(𝜅⊥ − 𝜅‖)

𝜕𝑦

𝐵𝑥𝐵𝑦

𝐵2
− (𝜅⊥ − 𝜅‖)

(︁
𝜕𝐵𝑥

𝜕𝑦 𝐵𝑦 +𝐵𝑥
𝜕𝐵𝑦
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𝐵 − 2𝐵𝑥𝐵𝑦

𝜕𝐵
𝜕𝑦

𝐵3
,

𝜕𝐵

𝜕𝑥
=

1

𝐵

(︂
𝐵𝑥

𝜕𝐵𝑥

𝜕𝑥
+𝐵𝑦

𝜕𝐵𝑦

𝜕𝑥

)︂
,

𝜕𝐵

𝜕𝑦
=

1

𝐵

(︂
𝐵𝑥

𝜕𝐵𝑥

𝜕𝑦
+𝐵𝑦

𝜕𝐵𝑦

𝜕𝑦

)︂
.

where 𝜅‖ and 𝜅⊥ can be functions of 𝐵𝑥, 𝐵𝑦 and 𝐵, so 𝜕𝜅‖/𝜕𝑥, 𝜕𝜅‖/𝜕𝑦, 𝜕𝜅⊥/𝜕𝑥, and 𝜕𝜅⊥/𝜕𝑦 still depend on
the derivatives 𝜕𝐵𝑥/𝜕𝑥, 𝜕𝐵𝑥/𝜕𝑦, 𝜕𝐵𝑦/𝜕𝑥, and 𝜕𝐵𝑦/𝜕𝑦. The detailed expressions depend on the diffusion model to
choose. Considering the expression of 𝜅‖, we get

𝜕𝜅

𝜕𝑥
∼ 𝜅

(︂
2

3𝐿𝑐

𝜕𝐿𝑐

𝜕𝑥
− 1

3𝐵

𝜕𝐵

𝜕𝑥
− 1

𝜎2

𝜕(𝜎2)

𝜕𝑥

)︂
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Note: We typically assume 𝐿𝑐 and 𝜎2 are spatially independent. However, they could vary spatially in a large system.

Time step criteria

For a 1D problem, the particle moves a distance satisfying 𝑙2𝑥 = max
(︁
⟨∆𝑥⟩2 ,

⟨︀
∆𝑥2

⟩︀)︁
[Strauss17], where

⟨∆𝑥⟩ =
(︂
𝑉𝑥 +

𝑑𝜅(𝑥)

𝑑𝑥

)︂
∆𝑡,

⟨︀
∆𝑥2

⟩︀
= 2𝜅(𝑥)∆𝑡,

and 𝑙𝑥 should be much smaller than the spatial variation scale of the fields. In this code, we require ⟨∆𝑥⟩2 <
⟨︀
∆𝑥2

⟩︀
and choose ∆𝑡 so that 𝑙𝑥 < 𝛿𝑥, where 𝛿𝑥 is the grid size. For the 2D problems, we choose the following criteria to
determine the time step:

∆𝑡𝑥 = min
[︂
(0.5𝛿𝑥)2

2𝜅‖
,

2𝜅⊥

(𝑉𝑥 + 𝜕𝑥𝜅𝑥𝑥 + 𝜕𝑦𝜅𝑥𝑦)2

]︂
,

∆𝑡𝑦 = min
[︂
(0.5𝛿𝑦)2

2𝜅‖
,

2𝜅⊥

(𝑉𝑦 + 𝜕𝑦𝜅𝑦𝑦 + 𝜕𝑥𝜅𝑥𝑦)2

]︂
,

∆𝑡 = min(∆𝑡𝑥,∆𝑡𝑦).

Higher-order method

To get a higher-order solution, we can use a derivative-free Milstein method [Burrage04] to solve the SDEs. It is
different from the usual method due to one more term, which makes it a higher-order method.

Note: This method was used by [Li18] but has since not been supported in default.

𝑑𝑋𝑡 = 𝑓(𝑋𝑡, 𝑡)𝑑𝑡+ 𝑔(𝑋𝑡, 𝑡)𝑑𝑊𝑡,

𝑋𝑛+1 = 𝑋𝑛 + 𝑓𝑛ℎ+ 𝑔𝑛∆𝑊𝑛 +
1

2
√
ℎ
[𝑔(�̄�𝑛)− 𝑔𝑛][(∆𝑊𝑛)

2 − ℎ],

�̄�𝑛 = 𝑋𝑛 + 𝑓𝑛ℎ+ 𝑔𝑛
√
ℎ,

∆𝑊𝑛 = [𝑊𝑡+ℎ −𝑊𝑡] ∼
√
ℎ𝑁(0, 1),

where 𝑋 corresponds to spatial positions 𝑥, 𝑦 and particle momentum 𝑝 in our simulation. Here 𝑓(𝑋𝑡, 𝑡) is the
deterministic term, 𝑔(𝑋𝑡, 𝑡) is the probabilistic term, ℎ is the time step, and 𝑁(0, 1) indicates a normal distribution,
which is substituted with a uniform distribution [−

√
3,
√
3] in our simulations to speed up the computation.

4.2.3 3D Model

The relationship
∑︀

𝜎 𝛼
𝜇
𝜎𝛼

𝜈
𝜎 = 2𝜅𝜇𝜈 is actually a matrix decomposition. We need to decompose 2𝜅 = 𝑃𝑃𝑇 , where

𝑃 = (𝛼1,𝛼2,𝛼3). In a 2D problem, the third component of 𝛼𝑖 is essentially 0. In a 3D problem, we need to find all
three components of 𝛼𝑖. We need some linear algebra for that. Every real symmetric matrix can be written in the form
(https://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix#Real_symmetric_matrices)

𝐴 = 𝑄Λ𝑄𝑇

26 Chapter 4. Theory
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where 𝑄 is an orthogonal matrix whose columns are the eigenvectors of 𝐴, and Λ is a diagonal matrix whose entries
are the eigenvalues of 𝐴. If the eigenvalues are non-negative, then the real matrix 𝑃 = 𝑄Λ1/2, and

𝐴 = 𝑄Λ1/2Λ1/2𝑄𝑇 =
𝑃𝑃𝑇

2

According to WolframAlpha, the eigenvalue of 𝜅 is 𝑘‖, 𝑘⊥, and 𝑘⊥, and the corresponding eigenvectors are

𝑣1 =

(︂
𝑏𝑥
𝑏𝑧

,
𝑏𝑦
𝑏𝑧

, 1

)︂
,

𝑣2 =

(︂
− 𝑏𝑧
𝑏𝑥

, 0, 1

)︂
,

𝑣3 =

(︂
− 𝑏𝑦
𝑏𝑥

, 1, 0

)︂
.

where 𝑏𝑥 = 𝐵𝑥/𝐵, 𝑏𝑦 = 𝐵𝑦/𝐵, and 𝑏𝑧 = 𝐵𝑧/𝐵. 𝑣1, 𝑣2, and 𝑣3 are not unit vectors, and 𝑣2 and 𝑣3 are not orthogonal
to 𝑣1, so we need to re-organize 𝑣2 and 𝑣3 and normalize the vectors.

𝑣1 = (𝑏𝑥, 𝑏𝑦, 𝑏𝑧) ,

𝑣2 =

⎛⎝− 𝑏𝑥𝑏𝑧√︁
𝑏2𝑥 + 𝑏2𝑦

,− 𝑏𝑦𝑏𝑧√︁
𝑏2𝑥 + 𝑏2𝑦

,
√︁
𝑏2𝑥 + 𝑏2𝑦

⎞⎠ ,

𝑣3 =

⎛⎝− 𝑏𝑦√︁
𝑏2𝑥 + 𝑏2𝑦

,
𝑏𝑥√︁

𝑏2𝑥 + 𝑏2𝑦

, 0

⎞⎠
where 𝑣2 is calculated from the perpendicular component of the original 𝑣2 w.r.t. 𝑣3. Then,

𝑄 =

⎛⎜⎜⎜⎝
𝑏𝑥 −𝑏𝑥𝑏𝑧/

√︁
𝑏2𝑥 + 𝑏2𝑦 −𝑏𝑦/

√︁
𝑏2𝑥 + 𝑏2𝑦

𝑏𝑦 −𝑏𝑦𝑏𝑧/
√︁

𝑏2𝑥 + 𝑏2𝑦 𝑏𝑥/
√︁
𝑏2𝑥 + 𝑏2𝑦

𝑏𝑧
√︁
𝑏2𝑥 + 𝑏2𝑦 0

⎞⎟⎟⎟⎠
Λ =

⎛⎝𝜅‖ 0 0
0 𝜅⊥ 0
0 0 𝜅⊥

⎞⎠

𝑃 =
√
2𝑄Λ1/2 =

⎛⎜⎜⎜⎝
𝑏𝑥
√︀
2𝜅‖ −𝑏𝑥𝑏𝑧

√
2𝜅⊥/

√︁
𝑏2𝑥 + 𝑏2𝑦 −𝑏𝑦

√
2𝜅⊥/

√︁
𝑏2𝑥 + 𝑏2𝑦

𝑏𝑦
√︀
2𝜅‖ −𝑏𝑦𝑏𝑧

√
2𝜅⊥/

√︁
𝑏2𝑥 + 𝑏2𝑦 𝑏𝑥

√
2𝜅⊥/

√︁
𝑏2𝑥 + 𝑏2𝑦

𝑏𝑧
√︀
2𝜅‖

√︁
𝑏2𝑥 + 𝑏2𝑦

√
2𝜅⊥ 0

⎞⎟⎟⎟⎠
We can verify that 𝑃𝑃𝑇 = 2𝜅. For 3D simulation, we need to calculate more terms of the gradient of the diffusion
tensor. The parameters used at particle locations are calculated from 𝑉𝑥, 𝑉𝑦 , 𝑉𝑧 , 𝑏𝑥, 𝑏𝑦 , 𝑏𝑧 , ∇ · 𝑉 , 𝜕𝑥𝑏𝑥, 𝜕𝑦𝑏𝑥, 𝜕𝑧𝑏𝑥,
𝜕𝑥𝑏𝑦 , 𝜕𝑦𝑏𝑦 , 𝜕𝑧𝑏𝑦 , 𝜕𝑥𝑏𝑧 , 𝜕𝑦𝑏𝑧 , 𝜕𝑧𝑏𝑧 .

𝜕𝑥𝜅𝑥𝑥 = 𝜕𝑥𝜅⊥ + 𝜕𝑥(𝜅‖ − 𝜅⊥)𝑏
2
𝑥 + 2(𝜅‖ − 𝜅⊥)𝑏𝑥𝜕𝑥𝑏𝑥,

𝜕𝑦𝜅𝑦𝑦 = 𝜕𝑦𝜅⊥ + 𝜕𝑦(𝜅‖ − 𝜅⊥)𝑏
2
𝑦 + 2(𝜅‖ − 𝜅⊥)𝑏𝑦𝜕𝑦𝑏𝑦,

𝜕𝑧𝜅𝑧𝑧 = 𝜕𝑧𝜅⊥ + 𝜕𝑧(𝜅‖ − 𝜅⊥)𝑏
2
𝑧 + 2(𝜅‖ − 𝜅⊥)𝑏𝑧𝜕𝑧𝑏𝑧,

𝜕𝑥𝜅𝑥𝑦 = 𝜕𝑥(𝜅‖ − 𝜅⊥)𝑏𝑥𝑏𝑦 + (𝜅‖ − 𝜅⊥)(𝜕𝑥𝑏𝑥𝑏𝑦 + 𝑏𝑥𝜕𝑥𝑏𝑦),

𝜕𝑦𝜅𝑥𝑦 = 𝜕𝑦(𝜅‖ − 𝜅⊥)𝑏𝑥𝑏𝑦 + (𝜅‖ − 𝜅⊥)(𝜕𝑦𝑏𝑥𝑏𝑦 + 𝑏𝑥𝜕𝑦𝑏𝑦),

𝜕𝑥𝜅𝑥𝑧 = 𝜕𝑥(𝜅‖ − 𝜅⊥)𝑏𝑥𝑏𝑧 + (𝜅‖ − 𝜅⊥)(𝜕𝑥𝑏𝑥𝑏𝑧 + 𝑏𝑥𝜕𝑥𝑏𝑧),

𝜕𝑧𝜅𝑥𝑧 = 𝜕𝑧(𝜅‖ − 𝜅⊥)𝑏𝑥𝑏𝑧 + (𝜅‖ − 𝜅⊥)(𝜕𝑧𝑏𝑥𝑏𝑧 + 𝑏𝑥𝜕𝑧𝑏𝑧),

𝜕𝑦𝜅𝑦𝑧 = 𝜕𝑦(𝜅‖ − 𝜅⊥)𝑏𝑦𝑏𝑧 + (𝜅‖ − 𝜅⊥)(𝜕𝑦𝑏𝑦𝑏𝑧 + 𝑏𝑦𝜕𝑦𝑏𝑧),

𝜕𝑧𝜅𝑦𝑧 = 𝜕𝑧(𝜅‖ − 𝜅⊥)𝑏𝑦𝑏𝑧 + (𝜅‖ − 𝜅⊥)(𝜕𝑧𝑏𝑦𝑏𝑧 + 𝑏𝑦𝜕𝑧𝑏𝑧)
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Or we may prefer to use current code structure that calculates 𝜕𝑥𝐵𝑥, 𝜕𝑦𝐵𝑥, 𝜕𝑧𝐵𝑥, 𝜕𝑥𝐵𝑦 , 𝜕𝑦𝐵𝑦 , 𝜕𝑧𝐵𝑦 , 𝜕𝑥𝐵𝑧 , 𝜕𝑦𝐵𝑧 ,
𝜕𝑧𝐵𝑧 . Then, the derivatives are calculated as

𝜕𝑥𝐵 = 𝑏𝑥𝜕𝑥𝐵𝑥 + 𝑏𝑦𝜕𝑥𝐵𝑦 + 𝑏𝑧𝜕𝑥𝐵𝑧,

𝜕𝑦𝐵 = 𝑏𝑥𝜕𝑦𝐵𝑥 + 𝑏𝑦𝜕𝑦𝐵𝑦 + 𝑏𝑧𝜕𝑦𝐵𝑧,

𝜕𝑧𝐵 = 𝑏𝑥𝜕𝑧𝐵𝑥 + 𝑏𝑦𝜕𝑧𝐵𝑦 + 𝑏𝑧𝜕𝑧𝐵𝑧,

𝜕𝑥𝜅𝑥𝑥 = 𝜕𝑥𝜅⊥ + 𝜕𝑥(𝜅‖ − 𝜅⊥)𝑏
2
𝑥 + 2(𝜅‖ − 𝜅⊥)(𝐵𝑥𝐵𝜕𝑥𝐵𝑥 −𝐵2

𝑥𝜕𝑥𝐵)/𝐵3,

𝜕𝑦𝜅𝑦𝑦 = 𝜕𝑦𝜅⊥ + 𝜕𝑦(𝜅‖ − 𝜅⊥)𝑏
2
𝑦 + 2(𝜅‖ − 𝜅⊥)(𝐵𝑦𝐵𝜕𝑦𝐵𝑦 −𝐵2

𝑦𝜕𝑦𝐵)/𝐵3,

𝜕𝑧𝜅𝑧𝑧 = 𝜕𝑧𝜅⊥ + 𝜕𝑧(𝜅‖ − 𝜅⊥)𝑏
2
𝑧 + 2(𝜅‖ − 𝜅⊥)(𝐵𝑧𝐵𝜕𝑧𝐵𝑧 −𝐵2

𝑧𝜕𝑧𝐵)/𝐵3,

𝜕𝑥𝜅𝑥𝑦 = 𝜕𝑥(𝜅‖ − 𝜅⊥)𝑏𝑥𝑏𝑦 + (𝜅‖ − 𝜅⊥)[(𝐵𝑦𝜕𝑥𝐵𝑥 +𝐵𝑥𝜕𝑥𝐵𝑦)𝐵 − 2𝐵𝑥𝐵𝑦𝜕𝑥𝐵]/𝐵3,

𝜕𝑦𝜅𝑥𝑦 = 𝜕𝑦(𝜅‖ − 𝜅⊥)𝑏𝑥𝑏𝑦 + (𝜅‖ − 𝜅⊥)[(𝐵𝑦𝜕𝑦𝐵𝑥 +𝐵𝑥𝜕𝑦𝐵𝑦)𝐵 − 2𝐵𝑥𝐵𝑦𝜕𝑦𝐵]/𝐵3,

𝜕𝑥𝜅𝑥𝑧 = 𝜕𝑥(𝜅‖ − 𝜅⊥)𝑏𝑥𝑏𝑧 + (𝜅‖ − 𝜅⊥)[(𝐵𝑧𝜕𝑥𝐵𝑥 +𝐵𝑥𝜕𝑥𝐵𝑧)𝐵 − 2𝐵𝑥𝐵𝑧𝜕𝑥𝐵]/𝐵3,

𝜕𝑧𝜅𝑥𝑧 = 𝜕𝑧(𝜅‖ − 𝜅⊥)𝑏𝑥𝑏𝑧 + (𝜅‖ − 𝜅⊥)[(𝐵𝑧𝜕𝑧𝐵𝑥 +𝐵𝑥𝜕𝑧𝐵𝑧)𝐵 − 2𝐵𝑥𝐵𝑧𝜕𝑧𝐵]/𝐵3,

𝜕𝑦𝜅𝑦𝑧 = 𝜕𝑦(𝜅‖ − 𝜅⊥)𝑏𝑦𝑏𝑧 + (𝜅‖ − 𝜅⊥)[(𝐵𝑧𝜕𝑦𝐵𝑦 +𝐵𝑦𝜕𝑦𝐵𝑧)𝐵 − 2𝐵𝑦𝐵𝑧𝜕𝑦𝐵]/𝐵3,

𝜕𝑧𝜅𝑦𝑧 = 𝜕𝑧(𝜅‖ − 𝜅⊥)𝑏𝑦𝑏𝑧 + (𝜅‖ − 𝜅⊥)[(𝐵𝑧𝜕𝑧𝐵𝑦 +𝐵𝑦𝜕𝑧𝐵𝑧)𝐵 − 2𝐵𝑦𝐵𝑧𝜕𝑧𝐵]/𝐵3.

Particle drift velocity

In the 3D model, we need the drift velocity, which is given by

𝑉 𝑑 =
𝑝𝑐𝑤

3𝑞
∇×

(︂
𝐵

𝐵2

)︂
=

1

3𝑞

𝑝2𝑐√︀
𝑝2 +𝑚2𝑐2

(︂
1

𝐵2
∇×𝐵 − 2

𝐵3
∇𝐵 ×𝐵

)︂
∇×𝐵 = (𝜕𝑦𝐵𝑧 − 𝜕𝑧𝐵𝑦 )̂𝑖+ (𝜕𝑧𝐵𝑥 − 𝜕𝑥𝐵𝑧)�̂� + (𝜕𝑥𝐵𝑦 − 𝜕𝑦𝐵𝑥)𝑘

∇𝐵 ×𝐵 = (𝐵𝑧𝜕𝑦𝐵 −𝐵𝑦𝜕𝑧𝐵)̂𝑖+ (𝐵𝑥𝜕𝑧𝐵 −𝐵𝑧𝜕𝑥𝐵)�̂� + (𝐵𝑦𝜕𝑥𝐵 −𝐵𝑥𝜕𝑦𝐵)𝑘

where 𝑝 = 𝛾𝑚𝑣 is particle momentum, 𝑐 is the speed of light, 𝑤 = 𝑣/𝑐 is the normalized particle speed, and 𝑞 is
particle charge. Using normalized quantities, we have

𝑉 𝑑 =
1

𝑣𝐴

1

3𝑞𝑒

𝑝2𝑝20𝑐√︀
𝑝2𝑝20 +𝑚2𝑐2

1

𝐵0𝐿0

(︂
1

�̃�2
∇̃ × �̃� − 2

�̃�3
∇̃�̃� × �̃�

)︂
=

1√︀
𝑑21𝑝

−2 + 𝑑22𝑝
−4

1

3𝑞

(︂
1

�̃�2
∇̃ × �̃� − 2

�̃�3
∇̃�̃� × �̃�

)︂
where 𝑉 𝑑 = 𝑉 𝑑/𝑣𝐴, 𝑞 = 𝑞/𝑒, ∇̃ = 𝐿0∇, �̃� = 𝐵/𝐵0, 𝑝 = 𝑝/𝑝0, 𝑑1 = 𝑒𝐵0𝑣𝐴𝐿0/(𝑝0𝑐), and 𝑑2 = 𝑒𝑚𝐵0𝑣𝐴𝐿0/𝑝

2
0.

Note that in the code, 𝑝 will be re-normalized. For example, 𝑝0 = 1 might correspond to 𝑝𝑛0 = 0.1 in simulations.
The re-normalized numerical momentum 𝑝𝑛 = 𝑝𝑝𝑛0. Thus, 𝑝 = 𝑝𝑛/𝑝𝑛0 in simulations, and we need provide 𝑑1 and
𝑑2 based on the normalization.

Note: The velocity normalization 𝑣𝐴 should be changed to 𝑣0 if 𝑣0 ̸= 𝑣𝐴

28 Chapter 4. Theory
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4.2.4 Momentum Diffusion

Note: Momentum diffusion is only partially supported now.

We can include an momentum diffusion term to the right side of the Parker transport equation.

𝜕𝑓

𝜕𝑡
+ (𝑉 + 𝑉 𝑑) · ∇𝑓 − 1

3
∇ · 𝑉 𝜕𝑓

𝜕 ln 𝑝
= ∇ · (𝜅∇𝑓) +

1

𝑝2
𝜕

𝜕𝑝

(︂
𝑝2𝐷𝑝𝑝

𝜕𝑓

𝜕𝑝

)︂
+𝑄, (4.3)

Neglecting the source term 𝑄 in equ_parker_2nd and assuming 𝐹 = 𝑓𝑝2,

𝜕𝐹

𝜕𝑡
=−∇ · [(∇ · 𝜅+ 𝑉 + 𝑉 𝑑)𝐹 ] +∇ · (∇ · (𝜅𝐹 ))+

𝜕

𝜕𝑝

[︂(︂
𝑝

3
∇ · 𝑉 − 𝜕𝐷𝑝𝑝

𝜕𝑝
− 2𝐷𝑝𝑝

𝑝

)︂
𝐹

]︂
+

𝜕(𝐷𝑝𝑝𝐹 )

𝜕𝑝2
.

which is equivalent to a system of SDEs of the Ito type,

𝑑𝑋 = (∇ · 𝜅+ 𝑉 + 𝑉 𝑑)𝑑𝑠+
∑︁
𝜎

𝛼𝜎𝑑𝑊𝜎(𝑠)

𝑑𝑝 =

(︂
−𝑝

3
∇ · 𝑉 +

𝜕𝐷𝑝𝑝

𝜕𝑝
+

2𝐷𝑝𝑝

𝑝

)︂
𝑑𝑠+

√︀
2𝐷𝑝𝑝𝑑𝑊 (𝑠)

where
∑︀

𝜎 𝛼
𝜇
𝜎𝛼

𝜈
𝜎 = 2𝜅𝜇𝜈 , 𝑑𝑊 is the normalized distributed random number with mean zero and variance

√
∆𝑡, and

∆𝑡 is the time step for stochastic integration.

Wave-particle interaction

For a 2D problem, reference [Skilling75] shows that for forward and backward propagating Alfvén waves,

𝑢 = 𝑣0 +

⟨
3

2
(1− 𝜇2)

𝜈+ − 𝜈−

𝜈+ + 𝜈−

⟩
, the velocity of mean wave frame

𝜅‖ = 𝑣2
⟨

1− 𝜇2

2(𝜈+ + 𝜈−)

⟩
, parallel spatial diffusion coefficient

𝐷𝑝𝑝 = 4𝛾2𝑚2𝑣2𝐴

⟨
1− 𝜇2

2

𝜈+𝜈−

𝜈+ + 𝜈−

⟩
, momentum diffusion coefficient

where ⟨. . . ⟩ donates 𝜇-average, 𝜈+ and 𝜈− are collision frequency against forward waves and backward waves, respec-
tively. If 𝜈+ is equal to 𝜈−,

𝐷𝑝𝑝 =
1

9

𝑝2𝑣2𝐴
𝜅‖

where 𝑝 = 𝛾𝑚𝑣 is particle momentum. Depending on the plasma parameter and wave properties, we may have to use
more complicated models [Schlickeiser89] [Schlickeiser98] [LeRoux07]. The corresponding SDE is

𝑑𝑝 =

(︂
−𝑝

3
∇ · 𝑉 +

4𝑝𝑣2𝐴
9𝜅‖

)︂
𝑑𝑠+

√︃
2𝑝2𝑣2𝐴
9𝜅‖

𝑑𝑊 (𝑠), if 𝜅‖ is independent of 𝑝

𝑑𝑝 =

(︂
−𝑝

3
∇ · 𝑉 +

8𝑝𝑣2𝐴
27𝜅‖

)︂
𝑑𝑠+

√︃
2𝑝2𝑣2𝐴
9𝜅‖

𝑑𝑊 (𝑠), if 𝜅‖ ∼ 𝑝4/3
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which are normalized to

𝑑𝑝𝑛 =

(︂
−𝑝𝑛

3
∇̃ · 𝑉 +

4𝑝𝑛𝑣
2
𝐴

9�̃�‖

)︂
𝑑𝑠+ 𝑝𝑛𝑣𝐴

√︃
2

9�̃�‖
𝑑𝑊 (𝑠), if 𝜅‖ is independent of 𝑝

𝑑𝑝𝑛 =

(︂
−𝑝𝑛

3
∇̃ · 𝑉 +

8𝑝𝑛𝑣
2
𝐴

27�̃�‖

)︂
𝑑𝑠+ 𝑝𝑛𝑣𝐴

√︃
2

9�̃�‖
𝑑𝑊 (𝑠), if 𝜅‖ ∼ 𝑝4/3

where 𝑝𝑛 = 𝑝𝑝𝑛0 = 𝑝𝑝𝑛0/𝑝0, where is 𝑝𝑛0 is the numerical value for particles with 𝑝0 in the code (e.g., 0.1 as often
used), ∇̃ = 𝐿0∇, 𝑉 = 𝑉 /𝑣𝐴0, 𝑣𝐴 = 𝑣𝐴0, �̃�‖ = 𝜅‖/𝜅0, 𝜅0 = 𝐿0𝑣𝐴0, 𝑠 = 𝑠/𝑡0, and 𝑡0 = 𝐿0/𝑣𝐴0. These are all
given in the code.

Flow shear

For isotropic particle distributions, the flow shear introduces another momentum diffusion term. If there is no average
magnetic field [Earl88].

𝐷𝑝𝑝 = Γ𝜏𝑝2,

Γ =
1

30

(︂
𝜕𝑈𝑖

𝜕𝑥𝑗
+

𝜕𝑈𝑗

𝜕𝑥𝑖

)︂2

− 2

45

𝜕𝑈𝑖

𝜕𝑥𝑖

𝜕𝑈𝑗

𝜕𝑥𝑗
=

2

15

∑︁
𝑖𝑗

𝜎2
𝑖𝑗

where Γ is the coefficient of viscous momentum transfer, 𝜎𝑖𝑗 = (𝜕𝑖𝑈𝑗+𝜕𝑗𝑈𝑖−2∇·𝑈𝛿𝑖𝑗/3)/2 is the shear tensor, 𝜏 is
the relaxation time for particle scattering. According to [Webb18], 𝜏 is related particle diffusion coefficient𝜅‖ = 𝑣2𝜏/3.
The corresponding SDE is

𝑑𝑝 =

(︂
−𝑝

3
∇ · 𝑣 +

Γ

𝑝2
𝜕(𝑝4𝜏)

𝜕𝑝

)︂
𝑑𝑠+

√︀
2Γ𝜏𝑝2𝑑𝑊 (𝑠)

For 𝜏 ∼ 𝜏0(𝑝0/𝑝)
𝛼,

𝑑𝑝 =

(︂
−𝑝

3
∇ · 𝑣 +

Γ𝜏0𝑝
𝛼
0

𝑝2
(4− 𝛼)𝑝3−𝛼

)︂
𝑑𝑠+

√︀
2Γ𝜏0𝑝𝛼0 𝑝

2−𝛼𝑑𝑊 (𝑠)

which is normalized to

𝑑𝑝𝑛 =

(︂
−𝑝𝑛

3
∇̃ · �̃� + (4− 𝛼)Γ̃𝜏0𝑝

1−𝛼
𝑛 𝑝𝛼𝑛0

)︂
𝑑𝑠+

√︁
2Γ̃𝜏0𝑝

2−𝛼
𝑛 𝑝𝛼𝑛0𝑑𝑊 (𝑠)

where 𝑝𝑛 = 𝑝𝑝𝑛0 = 𝑝𝑝𝑛0/𝑝0, where is 𝑝𝑛0 is the numerical value for particles with 𝑝0 in the code (e.g., 0.1 as often
used), ∇̃ = 𝐿0∇, �̃� = 𝑣/𝑣𝐴0, Γ̃ = Γ𝑡20, 𝜏0 = 𝜏0/𝑡0, 𝑠 = 𝑠/𝑡0, and 𝑡0 = 𝐿0/𝑣𝐴0. For 𝜏 ∼ 𝜏0(𝑝0/𝑝)

2 [Earl88],

𝑑𝑝𝑛 =

(︃
−𝑝𝑛

3
∇̃ · �̃� +

2Γ̃𝜏0𝑝
2
𝑛0

𝑝𝑛

)︃
𝑑𝑠+

√︁
2Γ̃𝜏0𝑝2𝑛0𝑑𝑊 (𝑠)

For 𝜏 ∼ 𝜏0(𝑝0/𝑝)
2/3 [Giacalone99],

𝑑𝑝𝑛 =

(︂
−𝑝𝑛

3
∇̃ · �̃� +

10

3
Γ̃𝜏0𝑝

1/3
𝑛 𝑝

2/3
𝑛0

)︂
𝑑𝑠+

√︁
2Γ̃𝜏0𝑝

4/3
𝑛 𝑝

2/3
𝑛0 𝑑𝑊 (𝑠)

𝜏0 = 3𝜅‖0/𝑣
2
0

If there is an average magnetic field, the equation is more complicated (see [Williams91] [Williams93]).
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4.2.5 Spherical Coordinates

In spherical coordinates, the drift velocity

𝑉 𝑑 =
𝑝𝑐𝑤

3𝑞
∇×

(︂
𝐵

𝐵2

)︂
=

1

3𝑞

𝑝2𝑐3√︀
𝑝2𝑐2 +𝑚2𝑐4

(︂
1

𝐵2
∇×𝐵 − 2

𝐵3
∇𝐵 ×𝐵

)︂
(∇×𝐵)𝑟 =

1

𝑟 sin 𝜃

𝜕

𝜕𝜃
(sin 𝜃𝐵𝜑)−

1

𝑟 sin 𝜃

𝜕𝐵𝜃

𝜕𝜑
=

1

𝑟

𝜕𝐵𝜑

𝜕𝜃
+

cos 𝜃

𝑟 sin 𝜃
𝐵𝜑 − 1

𝑟 sin 𝜃

𝜕𝐵𝜃

𝜕𝜑

(∇×𝐵)𝜃 =
1

𝑟 sin 𝜃

𝜕𝐵𝑟

𝜕𝜑
− 1

𝑟

𝜕

𝜕𝑟
(𝑟𝐵𝜑) =

1

𝑟 sin 𝜃

𝜕𝐵𝑟

𝜕𝜑
− 𝜕𝐵𝜑

𝜕𝑟
− 𝐵𝜑

𝑟

(∇×𝐵)𝜑 =
1

𝑟

𝜕

𝜕𝑟
(𝑟𝐵𝜃)−

1

𝑟

𝜕𝐵𝑟

𝜕𝜃
=

𝜕𝐵𝜃

𝜕𝑟
+

𝐵𝜃

𝑟
− 1

𝑟

𝜕𝐵𝑟

𝜕𝜃

(∇𝐵)𝑟 =
𝜕𝐵

𝜕𝑟
; (∇𝐵)𝜃 =

1

𝑟

𝜕𝐵

𝜕𝜃
; (∇𝐵)𝜑 =

1

𝑟 sin 𝜃

𝜕𝐵

𝜕𝜑

(∇𝐵 ×𝐵)𝑟 = (∇𝐵)𝜃𝐵𝜑 − (∇𝐵)𝜑𝐵𝜃

(∇𝐵 ×𝐵)𝜃 = (∇𝐵)𝜑𝐵𝑟 − (∇𝐵)𝑟𝐵𝜑

(∇𝐵 ×𝐵)𝜑 = (∇𝐵)𝑟𝐵𝜃 − (∇𝐵)𝜃𝐵𝑟

The spatial diffusion coefficient is in the same form.

𝜅 =

⎡⎣𝜅𝑟𝑟 𝜅𝑟𝜃 𝜅𝑟𝜑

𝜅𝑟𝜃 𝜅𝜃𝜃 𝜅𝜃𝜑

𝜅𝑟𝜑 𝜅𝜃𝜑 𝜅𝜑𝜑

⎤⎦
where 𝜅𝑖𝑗 = 𝜅⊥𝛿𝑖𝑗 − (𝜅⊥ − 𝜅‖)𝑏𝑖𝑏𝑗 , and 𝑖, 𝑗 are 𝑟, 𝜃, 𝜑.

Since 𝜅 is of the same form as that in the Cartesian coordinates, the gradients of 𝜅 are

𝜕𝑟𝜅𝑟𝑟 = 𝜕𝑟𝜅⊥ + 𝜕𝑟(𝜅‖ − 𝜅⊥)𝑏
2
𝑟 + 2(𝜅‖ − 𝜅⊥)(𝐵𝑟𝐵𝜕𝑟𝐵𝑟 −𝐵2

𝑟𝜕𝑟𝐵)/𝐵3,

𝜕𝜃𝜅𝜃𝜃 = 𝜕𝜃𝜅⊥ + 𝜕𝜃(𝜅‖ − 𝜅⊥)𝑏
2
𝜃 + 2(𝜅‖ − 𝜅⊥)(𝐵𝜃𝐵𝜕𝜃𝐵𝜃 −𝐵2

𝜃𝜕𝜃𝐵)/𝐵3,

𝜕𝜑𝜅𝜑𝜑 = 𝜕𝜑𝜅⊥ + 𝜕𝜑(𝜅‖ − 𝜅⊥)𝑏
2
𝜑 + 2(𝜅‖ − 𝜅⊥)(𝐵𝜑𝐵𝜕𝜑𝐵𝜑 −𝐵2

𝜑𝜕𝜑𝐵)/𝐵3,

𝜕𝑟𝜅𝑟𝜃 = 𝜕𝑟(𝜅‖ − 𝜅⊥)𝑏𝑟𝑏𝜃 + (𝜅‖ − 𝜅⊥)[(𝐵𝜃𝜕𝑟𝐵𝑟 +𝐵𝑟𝜕𝑟𝐵𝜃)𝐵 − 2𝐵𝑟𝐵𝜃𝜕𝑟𝐵]/𝐵3,

𝜕𝜃𝜅𝑟𝜃 = 𝜕𝜃(𝜅‖ − 𝜅⊥)𝑏𝑟𝑏𝜃 + (𝜅‖ − 𝜅⊥)[(𝐵𝜃𝜕𝜃𝐵𝑟 +𝐵𝑟𝜕𝜃𝐵𝜃)𝐵 − 2𝐵𝑟𝐵𝜃𝜕𝜃𝐵]/𝐵3,

𝜕𝑟𝜅𝑟𝜑 = 𝜕𝑟(𝜅‖ − 𝜅⊥)𝑏𝑟𝑏𝜑 + (𝜅‖ − 𝜅⊥)[(𝐵𝜑𝜕𝑟𝐵𝑟 +𝐵𝑟𝜕𝑟𝐵𝜑)𝐵 − 2𝐵𝑟𝐵𝜑𝜕𝑟𝐵]/𝐵3,

𝜕𝜑𝜅𝑟𝜑 = 𝜕𝜑(𝜅‖ − 𝜅⊥)𝑏𝑟𝑏𝜑 + (𝜅‖ − 𝜅⊥)[(𝐵𝜑𝜕𝜑𝐵𝑟 +𝐵𝑟𝜕𝜑𝐵𝜑)𝐵 − 2𝐵𝑟𝐵𝜑𝜕𝜑𝐵]/𝐵3,

𝜕𝜃𝜅𝜃𝜑 = 𝜕𝜃(𝜅‖ − 𝜅⊥)𝑏𝜃𝑏𝜑 + (𝜅‖ − 𝜅⊥)[(𝐵𝜑𝜕𝜃𝐵𝜃 +𝐵𝜃𝜕𝜃𝐵𝜑)𝐵 − 2𝐵𝜃𝐵𝜑𝜕𝜃𝐵]/𝐵3,

𝜕𝜑𝜅𝜃𝜑 = 𝜕𝜑(𝜅‖ − 𝜅⊥)𝑏𝜃𝑏𝜑 + (𝜅‖ − 𝜅⊥)[(𝐵𝜑𝜕𝜑𝐵𝜃 +𝐵𝜃𝜕𝜑𝐵𝜑)𝐵 − 2𝐵𝜃𝐵𝜑𝜕𝜑𝐵]/𝐵3.

We then need to transfer the Parker transport equation to the spherical coordinates. Since we don’t have cross-diffusion
terms (spatial and momentum), we can ignore the momentum diffusion for now.

Note: For a more complete equation, the cross-diffusion terms should be included.

𝜕𝐹

𝜕𝑡
= −(𝑉 + 𝑉 𝑑) · ∇𝐹 − (∇ · 𝑉 )𝐹 +

𝜕

𝜕𝑝

[︁𝑝
3
(∇ · 𝑉 )𝐹

]︁
+∇ · (𝜅 · ∇𝐹 )

where 𝐹 = 𝑓𝑝2. Since ∇ · 𝑉 𝑑 = 0, we can add one more term −(∇ · 𝑉 𝑑)𝐹 to the right. Then,

𝜕𝐹

𝜕𝑡
= −∇ · ((𝑉 + 𝑉 𝑑)𝐹 ) +

𝜕

𝜕𝑝

[︁𝑝
3
(∇ · 𝑉 )𝐹

]︁
+∇ · (𝜅 · ∇𝐹 )
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Taking 𝑉 + 𝑉 𝑑 → 𝑉 ,

∇ · (𝑉 𝐹 ) =
1

𝑟2
𝜕

𝜕𝑟
(𝑟2𝑉𝑟𝐹 ) +

1

𝑟 sin 𝜃

𝜕

𝜕𝜃
(sin 𝜃𝑉𝜃𝐹 ) +

1

𝑟 sin 𝜃

𝜕

𝜕𝜑
(𝑉𝜑𝐹 )

=
𝜕(𝑉𝑟𝐹 )

𝜕𝑟
+

2

𝑟
𝑉𝑟𝐹 +

𝜕

𝜕𝜃

(︂
𝑉𝜃𝐹

𝑟

)︂
+

cos 𝜃

𝑟 sin 𝜃
𝑉𝜃𝐹 +

𝜕

𝜕𝜑

(︂
𝑉𝜑𝐹

𝑟 sin 𝜃

)︂
so there is 2 additional terms (2nd and 4th) if we want to write the equation Fokker–Planck form. It turns out that we
need to change 𝐹 to 𝐹1 = 𝐹 sin 𝜃𝑟2 [Jokipii77] [Pei10]. Multiplying the above equation by 𝑟2 sin 𝜃, we get

𝑟2 sin 𝜃∇ · (𝑉 𝐹 ) =
𝜕(𝑉𝑟𝐹1)

𝜕𝑟
+

𝜕

𝜕𝜃

(︂
𝑉𝜃𝐹1

𝑟

)︂
+

𝜕

𝜕𝜑

(︂
𝑉𝜑𝐹1

𝑟 sin 𝜃

)︂
For the diffusion term,

𝜅 · ∇𝐹 =

(︂
𝜅𝑟𝑟

𝜕𝐹

𝜕𝑟
+ 𝜅𝑟𝜃

1

𝑟

𝜕𝐹

𝜕𝜃
+ 𝜅𝑟𝜑

1

𝑟 sin 𝜃

𝜕𝐹

𝜕𝜑

)︂
𝑒𝑟+(︂

𝜅𝑟𝜃
𝜕𝐹

𝜕𝑟
+ 𝜅𝜃𝜃

1

𝑟

𝜕𝐹

𝜕𝜃
+ 𝜅𝜃𝜑

1

𝑟 sin 𝜃

𝜕𝐹

𝜕𝜑

)︂
𝑒𝜃+(︂

𝜅𝑟𝜑
𝜕𝐹

𝜕𝑟
+ 𝜅𝜃𝜑

1

𝑟

𝜕𝐹

𝜕𝜃
+ 𝜅𝜑𝜑

1

𝑟 sin 𝜃

𝜕𝐹

𝜕𝜑

)︂
𝑒𝜑

Taking 𝐴 = 𝜅 · ∇𝐹 ,

𝑟2 sin 𝜃∇ ·𝐴 =
𝜕(𝑟2 sin 𝜃𝐴𝑟)

𝜕𝑟
+

𝜕(𝑟 sin 𝜃𝐴𝜃)

𝜕𝜃
+

𝜕(𝑟𝐴𝜑)

𝜕𝜑

The 1st term on the right is expanded to

𝜕2

𝜕𝑟2
(𝜅𝑟𝑟𝐹1) +

𝜕2

𝜕𝑟𝜕𝜃

(︁𝜅𝑟𝜃

𝑟
𝐹1

)︁
+

𝜕2

𝜕𝑟𝜕𝜑

(︁ 𝜅𝑟𝜑

𝑟 sin 𝜃
𝐹1

)︁
− 𝜕

𝜕𝑟

[︂(︂
1

𝑟2
𝜕(𝑟2𝜅𝑟𝑟)

𝜕𝑟
+

1

𝑟

𝜕𝜅𝑟𝜃

𝜕𝜃
+

cos 𝜃

𝑟 sin 𝜃
𝜅𝑟𝜃 +

1

𝑟 sin 𝜃

𝜕𝜅𝑟𝜑

𝜕𝜑

)︂
𝐹1

]︂
The 2nd term one the right is expanded to

𝜕2

𝜕𝑟𝜕𝜃

(︁𝜅𝑟𝜃

𝑟
𝐹1

)︁
+

𝜕2

𝜕𝜃2

(︁𝜅𝜃𝜃

𝑟2
𝐹1

)︁
+

𝜕2

𝜕𝜃𝜕𝜑

(︁ 𝜅𝜃𝜑

𝑟2 sin 𝜃
𝐹1

)︁
− 𝜕

𝜕𝜃

[︂(︂
1

𝑟2
𝜕(𝑟𝜅𝑟𝜃)

𝜕𝑟
+

1

𝑟2 sin 𝜃

𝜕(sin 𝜃𝜅𝜃𝜃)

𝜕𝜃
+

1

𝑟2 sin 𝜃

𝜕𝜅𝜃𝜑

𝜕𝜑

)︂
𝐹1

]︂
The 3rd term one the right is expanded to

𝜕2

𝜕𝑟𝜕𝜑

(︁ 𝜅𝑟𝜑

𝑟 sin 𝜃
𝐹1

)︁
+

𝜕2

𝜕𝜃𝜕𝜑

(︁ 𝜅𝜃𝜑

𝑟2 sin 𝜃
𝐹1

)︁
+

𝜕2

𝜕𝜑2

(︂
𝜅𝜑𝜑

𝑟2 sin2 𝜃
𝐹1

)︂
− 𝜕

𝜕𝜑

[︂(︂
1

𝑟2 sin 𝜃

𝜕(𝑟𝜅𝑟𝜑)

𝜕𝑟
+

1

𝑟2 sin 𝜃

𝜕(𝜅𝜃𝜑)

𝜕𝜃
+

1

𝑟2 sin2 𝜃

𝜕𝜅𝜑𝜑

𝜕𝜑

)︂
𝐹1

]︂
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The final transferred version of Parker transport equation is

𝜕𝐹1

𝜕𝑡
=− 𝜕

𝜕𝑟

[︂(︂
𝑣𝑟 + 𝑣𝑑𝑟 +

1

𝑟2
𝜕(𝑟2𝜅𝑟𝑟)

𝜕𝑟
+

1

𝑟

𝜕𝜅𝑟𝜃

𝜕𝜃
+

cos 𝜃

𝑟 sin 𝜃
𝜅𝑟𝜃 +

1

𝑟 sin 𝜃

𝜕𝜅𝑟𝜑

𝜕𝜑

)︂
𝐹1

]︂
− 𝜕

𝜕𝜃

[︂(︂
𝑣𝜃 + 𝑣𝑑𝜃

𝑟
+

1

𝑟2
𝜕(𝑟𝜅𝑟𝜃)

𝜕𝑟
+

1

𝑟2 sin 𝜃

𝜕(sin 𝜃𝜅𝜃𝜃)

𝜕𝜃
+

1

𝑟2 sin 𝜃

𝜕𝜅𝜃𝜑

𝜕𝜑

)︂
𝐹1

]︂
− 𝜕

𝜕𝜑

[︂(︂
𝑣𝜑 + 𝑣𝑑𝜑
𝑟 sin 𝜃

+
1

𝑟2 sin 𝜃

𝜕(𝑟𝜅𝑟𝜑)

𝜕𝑟
+

1

𝑟2 sin 𝜃

𝜕(𝜅𝜃𝜑)

𝜕𝜃
+

1

𝑟2 sin2 𝜃

𝜕𝜅𝜑𝜑

𝜕𝜑

)︂
𝐹1

]︂
+

𝜕

𝜕𝑝

(︂
𝑝

3

(︂
1

𝑟2
𝜕(𝑟2𝑣𝑟)

𝜕𝑟
+

1

𝑟 sin 𝜃

𝜕(sin 𝜃𝑣𝜃)

𝜕𝜃
+

1

𝑟 sin 𝜃

𝜕𝑣𝜑
𝜕𝜑

)︂
𝐹1

)︂
+

𝜕2

𝜕𝑟2
(𝜅𝑟𝑟𝐹1) +

𝜕2

𝜕𝑟𝜕𝜃

(︁𝜅𝑟𝜃

𝑟
𝐹1

)︁
+

𝜕2

𝜕𝑟𝜕𝜑

(︁ 𝜅𝑟𝜑

𝑟 sin 𝜃
𝐹1

)︁
+

𝜕2

𝜕𝑟𝜕𝜃

(︁𝜅𝑟𝜃

𝑟
𝐹1

)︁
+

𝜕2

𝜕𝜃2

(︁𝜅𝜃𝜃

𝑟2
𝐹1

)︁
+

𝜕2

𝜕𝜃𝜕𝜑

(︁ 𝜅𝜃𝜑

𝑟2 sin 𝜃
𝐹1

)︁
+

𝜕2

𝜕𝑟𝜕𝜑

(︁ 𝜅𝑟𝜑

𝑟 sin 𝜃
𝐹1

)︁
+

𝜕2

𝜕𝜃𝜕𝜑

(︁ 𝜅𝜃𝜑

𝑟2 sin 𝜃
𝐹1

)︁
+

𝜕2

𝜕𝜑2

(︂
𝜅𝜑𝜑

𝑟2 sin2 𝜃
𝐹1

)︂
This corresponds to a set of SDEs.

𝑑𝑟 =

(︂
𝑣𝑟 + 𝑣𝑑𝑟 +

𝜕𝜅𝑟𝑟

𝜕𝑟
+

2

𝑟
𝜅𝑟𝑟 +

1

𝑟

𝜕𝜅𝑟𝜃

𝜕𝜃
+

cos 𝜃

𝑟 sin 𝜃
𝜅𝑟𝜃 +

1

𝑟 sin 𝜃

𝜕𝜅𝑟𝜑

𝜕𝜑

)︂
𝑑𝑡+ [𝑃.𝑑𝑊𝑡]𝑟

𝑑𝜃 =

(︂
𝑣𝜃 + 𝑣𝑑𝜃

𝑟
+

1

𝑟

𝜕𝜅𝑟𝜃

𝜕𝑟
+

𝜅𝑟𝜃

𝑟2
+

1

𝑟2
𝜕𝜅𝜃𝜃

𝜕𝜃
+

cos 𝜃

𝑟2 sin 𝜃
𝜅𝜃𝜃 +

1

𝑟2 sin 𝜃

𝜕𝜅𝜃𝜑

𝜕𝜑

)︂
𝑑𝑡+ [𝑃.𝑑𝑊𝑡]𝜃

𝑑𝜑 =

(︂
𝑣𝜑 + 𝑣𝑑𝜑
𝑟 sin 𝜃

+
1

𝑟 sin 𝜃

𝜕𝜅𝑟𝜑

𝜕𝑟
+

𝜅𝑟𝜑

𝑟2 sin 𝜃
+

1

𝑟2 sin 𝜃

𝜕𝜅𝜃𝜑

𝜕𝜃
+

1

𝑟2 sin2 𝜃

𝜕𝜅𝜑𝜑

𝜕𝜑

)︂
𝑑𝑡+ [𝑃.𝑑𝑊𝑡]𝜑

𝑑𝑝 = −𝑝

3

(︂
𝜕𝑣𝑟
𝜕𝑟

+
2𝑣𝑟
𝑟

+
1

𝑟

𝜕𝑣𝜃
𝜕𝜃

+
cos 𝜃

𝑟 sin 𝜃
𝑣𝜃 +

1

𝑟 sin 𝜃

𝜕𝑣𝜑
𝜕𝜑

)︂
where

𝑃𝑃𝑇 =

⎡⎢⎢⎢⎢⎣
2𝜅𝑟𝑟

2𝜅𝑟𝜃

𝑟

2𝜅𝑟𝜑

𝑟 sin 𝜃
2𝜅𝑟𝜃

𝑟

2𝜅𝜃𝜃

𝑟2
2𝜅𝜃𝜑

𝑟2 sin 𝜃
2𝜅𝑟𝜑

𝑟 sin 𝜃

2𝜅𝜃𝜑

𝑟2 sin 𝜃

2𝜅𝜑𝜑

𝑟2 sin2 𝜃

⎤⎥⎥⎥⎥⎦
According to [Pei10], one possibility for 𝑃 is⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√︃
𝜅𝑟𝑟𝜅

2
𝜃𝜑 + 𝜅𝜃𝜃𝜅

2
𝑟𝜑 + 𝜅𝜑𝜑𝜅

2
𝑟𝜃 − 2𝜅𝑟𝜑𝜅𝑟𝜃𝜅𝜃𝜑 − 𝜅𝑟𝑟𝜅𝜃𝜃𝜅𝜑𝜑

0.5(𝜅2
𝜃𝜑 − 𝜅𝜃𝜃𝜅𝜑𝜑)

𝜅𝑟𝜑𝜅𝜃𝜑 − 𝜅𝑟𝜃𝜅𝜑𝜑

𝜅2
𝜃𝜑 − 𝜅𝜃𝜃𝜅𝜑𝜑

√︃
2𝜅𝜃𝜃 −

2𝜅2
𝜃𝜑

𝜅𝜑𝜑

√
2𝜅𝑟𝜑√
𝜅𝜑𝜑

0

√︂
2
(︁
𝜅𝜃𝜃 − 𝜅2

𝜃𝜑/𝜅𝜑𝜑

)︁
𝑟

𝜅𝜃𝜑

𝑟

√︂
2

𝜅𝜑𝜑

0 0

√︀
2𝜅𝜑𝜑

𝑟 sin 𝜃

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
For 1D probelms, 𝐹1 = 𝑓𝑝2𝑟2, and the corresponding SDEs are

𝑑𝑟 =

(︂
𝑣𝑟 +

𝜕𝜅𝑟𝑟

𝜕𝑟
+

2

𝑟
𝜅𝑟𝑟

)︂
𝑑𝑡+

√
2𝜅𝑟𝑟𝑑𝑊𝑡

𝑑𝑝 = −𝑝

3

(︂
𝜕𝑣𝑟
𝜕𝑟

+
2𝑣𝑟
𝑟

)︂
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For 2D problems, 𝐹1 = 𝑓𝑝2𝑟2 sin 𝜃, and the corresponding SDEs are

𝑑𝑟 =

(︂
𝑣𝑟 +

𝜕𝜅𝑟𝑟

𝜕𝑟
+

2

𝑟
𝜅𝑟𝑟 +

1

𝑟

𝜕𝜅𝑟𝜃

𝜕𝜃
+

cos 𝜃

𝑟 sin 𝜃
𝜅𝑟𝜃

)︂
𝑑𝑡+ [𝑃.𝑑𝑊𝑡]𝑟

𝑑𝜃 =

(︂
𝑣𝜃
𝑟

+
1

𝑟

𝜕𝜅𝑟𝜃

𝜕𝑟
+

𝜅𝑟𝜃

𝑟2
+

1

𝑟2
𝜕𝜅𝜃𝜃

𝜕𝜃
+

cos 𝜃

𝑟2 sin 𝜃
𝜅𝜃𝜃

)︂
𝑑𝑡+ [𝑃.𝑑𝑊𝑡]𝜃

𝑑𝑝 = −𝑝

3

(︂
𝜕𝑣𝑟
𝜕𝑟

+
2𝑣𝑟
𝑟

+
1

𝑟

𝜕𝑣𝜃
𝜕𝜃

+
cos 𝜃

𝑟 sin 𝜃
𝑣𝜃

)︂
where

𝑃𝑃𝑇 =

⎡⎢⎣2𝜅𝑟𝑟
2𝜅𝑟𝜃

𝑟
2𝜅𝑟𝜃

𝑟

2𝜅𝜃𝜃

𝑟2

⎤⎥⎦
One possibility for 𝑃 is ⎡⎢⎢⎢⎢⎢⎣

−
𝑄−−

√︀
−𝑄−+√︁

𝑄2
−− + 4𝑏2

𝑄+−
√︀
𝑄++√︁

𝑄2
+− + 4𝑏2

2𝑏
√︀
−𝑄−+√︁

𝑄2
−− + 4𝑏2

2𝑏
√︀

𝑄++√︁
𝑄2

+− + 4𝑏2

⎤⎥⎥⎥⎥⎥⎦
where

𝑄++ =
√︀

(𝑎− 𝑐)2 + 4𝑏2 + (𝑎+ 𝑐)

𝑄−+ =
√︀
(𝑎− 𝑐)2 + 4𝑏2 − (𝑎+ 𝑐)

𝑄+− =
√︀
(𝑎− 𝑐)2 + 4𝑏2 + (𝑎− 𝑐)

𝑄−− =
√︀
(𝑎− 𝑐)2 + 4𝑏2 − (𝑎− 𝑐)

where 𝑎 = 𝜅𝑟𝑟, 𝑏 = 𝜅𝑟𝜃/𝑟, 𝑐 = 𝜅𝜃𝜃/𝑟
2.

4.3 Focused Transport Equation

4.3.1 The Equation Solved

Warning: This part is still in early development. Please use it with caution.

Note: It is better to read the section on Parker’s transport equation first since some of the details are skipped here.

The focused transport equation is [Zank14]

𝜕𝑓

𝜕𝑡
+ (𝑈𝑖 + 𝑐𝜇𝑏𝑖)

𝜕𝑓

𝜕𝑥𝑖
+

𝑑𝑐

𝑑𝑡

𝜕𝑓

𝜕𝑐
+

𝑑𝜇

𝑑𝑡

𝜕𝑓

𝜕𝜇
=

⟨
𝛿𝑓

𝛿𝑡

⃒⃒⃒⃒
𝑠

⟩
𝑑𝑐

𝑑𝑡
=

[︂
1− 3𝜇2

2
𝑏𝑖𝑏𝑗

𝜕𝑈𝑖

𝜕𝑥𝑗
− 1− 𝜇2

2
∇ ·𝑈 − 𝜇𝑏𝑖

𝑐

(︂
𝜕𝑈𝑖

𝜕𝑡
+ 𝑈𝑗

𝜕𝑈𝑖

𝜕𝑥𝑗

)︂]︂
𝑐

𝑑𝜇

𝑑𝑡
=

1− 𝜇2

2

[︂
𝑐∇ · 𝑏+ 𝜇∇ ·𝑈 − 3𝜇𝑏𝑖𝑏𝑗

𝜕𝑈𝑖

𝜕𝑥𝑗
− 2𝑏𝑖

𝑐

(︂
𝜕𝑈𝑖

𝜕𝑡
+ 𝑈𝑗

𝜕𝑈𝑖

𝜕𝑥𝑗

)︂]︂

34 Chapter 4. Theory



Global Particle Acceleration and Transport (GPAT) Model, Release 0.2

where 𝑐 is the particle velocity in the flow frame (𝑣 = 𝑐+𝑈 ), 𝜇 ≡ cos 𝜃 = 𝑐 ·𝑏/𝑐 is the particle pitch angle, 𝑏 ≡ 𝐵/𝐵
is the unit vector along the magnetic field. The following focused transport equation is often used [Zhang09] [Zuo13]
[Zhang17] [Kong22],

𝜕𝑓

𝜕𝑡
= ∇ · (𝜅⊥∇𝑓)− (𝑣𝜇𝑏+ 𝑉 + 𝑉 𝑑) · ∇𝑓 +

𝜕

𝜕𝜇

(︂
𝐷𝜇𝜇

𝜕𝑓

𝜕𝜇

)︂
− 𝑑𝜇

𝑑𝑡

𝜕𝑓

𝜕𝜇
− 𝑑𝑝

𝑑𝑡

𝜕𝑓

𝜕𝑝
(4.4)

where the terms on the right-hand side are cross-field spatial diffusion with a tensor 𝜅⊥ = 𝜅⊥

(︁
I− 𝑏𝑏

)︁
[Zhang09],

streaming along the ambient or average magnetic field direction 𝑏 with particle speed 𝑣 and pitch-angle cosine 𝜇,
convection with the background plasma 𝑉 , partial gradient/curvature drift 𝑉 𝑑, pitch-angle diffusion with a coefficient
𝐷𝜇𝜇, focusing 𝑑𝜇/𝑑𝑡, and adiabatic heating/cooling 𝑑𝑝/𝑑𝑡. In the adiabatic approximation, the drift velocity, focusing
rate, and cooling rate may be calculated from the ambient magnetic field 𝐵 = 𝐵𝑏 and plasma velocity 𝑉 through

𝑉 𝑑 =
𝑐𝑝𝑣

𝑞𝐵

{︂
1− 𝜇2

2

𝐵 ×∇𝐵

𝐵2
+ 𝜇2𝐵 × [(𝐵 · ∇)𝐵]

𝐵3
+

1− 𝜇2

2

𝐵(𝐵 · ∇ ×𝐵)

𝐵3

}︂
𝑑𝜇

𝑑𝑡
=

1− 𝜇2

2

[︂
−𝑣𝑏 · ∇ ln𝐵 + 𝜇∇ · 𝑉 − 3𝜇𝑏𝑖𝑏𝑗

𝜕𝑉𝑖

𝜕𝑥𝑗
− 2𝑏𝑖

𝑣

𝑑𝑉𝑖

𝑑𝑡

]︂
𝑑𝑝

𝑑𝑡
= −𝑝

[︂
1− 𝜇2

2

(︂
∇ · 𝑉 − 𝑏𝑖𝑏𝑗

𝜕𝑉𝑖

𝜕𝑥𝑗

)︂
+ 𝜇2𝑏𝑖𝑏𝑗

𝜕𝑉𝑖

𝜕𝑥𝑗
+

𝜇𝑏𝑖
𝑣

𝑑𝑉𝑖

𝑑𝑡

]︂
where 𝑉 𝑑 includes gradient, curvature, and parallel drifts. We may ignore 𝜕𝑉𝑖/𝜕𝑡 in 𝑑𝑉𝑖/𝑑𝑡 if the flow is not dramat-
ically evolving.

In the quasi-linear theory, resonant interaction between the particle and the turbulent magnetic field can be related by
the pitch-angle diffusion coefficient 𝐷𝜇𝜇 [Jokipii77] [Kong22]

𝐷𝜇𝜇 =
𝜋

4
Ω0(1− 𝜇2)

𝑘res𝑃 (𝑘res)

𝐵2
0

where Ω0 is particle gyrofrequency, 𝑘res = |Ω0/𝑣𝜇| is the resonant wavenumber. The above equation is strictly ap-
plicable only for the case of 1D turbulence in which the wavevectors are aligned with the mean field. For anisotropic
turbulence (e.g., 2D + slab), only the slab turbulence (about 20% of all turbulent fluctuations [Bieber96]) affect particle
parallel transport [Florinski03]. The turbulence power is usually expressed as

𝑃 (𝑘) =

⟨︀
𝛿𝐵2

⟩︀
1 + (𝑘𝐿𝑐)𝛾

[︃∫︁ 𝑘max

𝑘min

𝑑𝑘

1 + (𝑘𝐿𝑐)𝛾

]︃−1

where 𝑘min and 𝑘max are the smallest and largest wavenumbers in the system, 𝐿𝑐 is the turbulence correlation length,
and 𝛾 is the turbulence spectrum index (e.g., 5/3). For 𝑘min ≪ 1/𝐿𝑐 ≪ 𝑘max, the integral in the above equation can be
taken from 0 to ∞. From the table of integral,

∫︀∞
0

𝑥𝜇−1𝑑𝑥/(1 + 𝑥𝜈) = 𝜋 csc(𝜇𝜋/𝜈)/𝜈. Then,

𝑃 (𝑘) =

⟨︀
𝛿𝐵2

⟩︀
𝐿𝑐

1 + (𝑘𝐿𝑐)𝛾
𝐴0

where 𝐴0 = [(𝜋/𝛾) csc(𝜋/𝛾)]
−1. In the nonrelativistic limit, we take the pitch-angle diffusion coefficient in the form

of [Kong22]

𝐷𝜇𝜇 = 𝐷𝜇𝜇0

(︂
𝑝

𝑝0

)︂𝛾−1

(1− 𝜇2)(|𝜇|𝛾−1 + ℎ0)

where 𝐷𝜇𝜇0 = 𝜋
4𝐴0𝜎

2Ω2−𝛾
0 𝐿1−𝛾

𝑐 𝑣𝛾−1
0 , and 𝑝0(𝑣0) is the initial particle momentum (velocity) at the injection energy.

The parameter ℎ0 is added to describe the scattering through 𝜇 = 0, and we set ℎ0 = 0.2 [Zhang17] [Kong22].

𝜕𝐷𝜇𝜇

𝜕𝜇
= 𝐷𝜇𝜇0

(︂
𝑝

𝑝0

)︂𝛾−1 [︀
−2𝜇(|𝜇|𝛾−1 + ℎ0) + (1− 𝜇2)sign(𝜇)|𝜇|𝛾−2

]︀
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4.3.2 Cartesian Coordinates

The Fokker-Planck form of the focused transport equation is

𝜕𝐹

𝜕𝑡
=∇ · [∇ · (𝜅⊥∇𝐹 )]−∇ · [(𝑣𝜇𝑏+ 𝑉 + 𝑉 𝑑 +∇ · 𝜅⊥)𝐹 ]

+
𝜕

𝜕𝜇2
(𝐷𝜇𝜇𝐹 )− 𝜕

𝜕𝜇

[︂(︂
𝑑𝜇

𝑑𝑡
+

𝜕𝐷𝜇𝜇

𝜕𝜇

)︂
𝐹

]︂
− 𝜕

𝜕𝑝

(︂
𝑑𝑝

𝑑𝑡
𝐹

)︂
where 𝐹 = 𝑓𝑝2. The corresponding SDEs are

𝑑𝑋 = (𝑣𝜇𝑏+ 𝑉 + 𝑉 𝑑 +∇ · 𝜅⊥)𝑑𝑡+
∑︁
𝜎

𝛼𝜎𝑑𝑊𝜎(𝑠)

𝑑𝑝 =

(︂
𝑑𝑝

𝑑𝑡

)︂
𝑑𝑡

𝑑𝜇 =

(︂
𝑑𝜇

𝑑𝑡
+

𝜕𝐷𝜇𝜇

𝜕𝜇

)︂
𝑑𝑡+

√︀
2𝐷𝜇𝜇𝑑𝑊𝜇(𝑡)

where
∑︀

𝜎 𝛼
𝜇
𝜎𝛼

𝜈
𝜎 = 2𝜅𝜇𝜈

⊥ . We can use the results from the 3D model with whole spatial diffusion tensor 𝜅 but set
𝜅‖ = 0. The matrix

𝑃 =

⎛⎜⎜⎜⎝
0 −𝑏𝑥𝑏𝑧

√
2𝜅⊥/

√︁
𝑏2𝑥 + 𝑏2𝑦 −𝑏𝑦

√
2𝜅⊥/

√︁
𝑏2𝑥 + 𝑏2𝑦

0 −𝑏𝑦𝑏𝑧
√
2𝜅⊥/

√︁
𝑏2𝑥 + 𝑏2𝑦 𝑏𝑥

√
2𝜅⊥/

√︁
𝑏2𝑥 + 𝑏2𝑦

0
√︁
𝑏2𝑥 + 𝑏2𝑦

√
2𝜅⊥ 0

⎞⎟⎟⎟⎠
Since the first column is all zeros, we only need two Weiner processes to describe the spatial diffusion. For 2D problems,

𝑃 =

√
2𝜅⊥√︁

𝑏2𝑥 + 𝑏2𝑦

(︂
−𝑏𝑥𝑏𝑧 −𝑏𝑦
−𝑏𝑦𝑏𝑧 𝑏𝑥

)︂
To calculate the drift velocity

𝑉 𝑑 =
𝑐𝑝𝑣

𝑞𝐵

{︂
1− 𝜇2

2

𝐵 ×∇𝐵

𝐵2
+ 𝜇2𝐵 × [(𝐵 · ∇)𝐵]

𝐵3
+

1− 𝜇2

2

𝐵(𝐵 · ∇ ×𝐵)

𝐵3

}︂
,

we need

(𝐵 ×∇𝐵)𝑥 = 𝐵𝑦𝜕𝑧𝐵 −𝐵𝑧𝜕𝑦𝐵

(𝐵 ×∇𝐵)𝑦 = 𝐵𝑧𝜕𝑥𝐵 −𝐵𝑥𝜕𝑧𝐵

(𝐵 ×∇𝐵)𝑧 = 𝐵𝑥𝜕𝑦𝐵 −𝐵𝑦𝜕𝑥𝐵

{𝐵 × [(𝐵 · ∇)𝐵]}𝑥 = 𝐵𝑦(𝐵 · ∇)𝐵𝑧 −𝐵𝑧(𝐵 · ∇)𝐵𝑦

{𝐵 × [(𝐵 · ∇)𝐵]}𝑦 = 𝐵𝑧(𝐵 · ∇)𝐵𝑥 −𝐵𝑥(𝐵 · ∇)𝐵𝑧

{𝐵 × [(𝐵 · ∇)𝐵]}𝑧 = 𝐵𝑥(𝐵 · ∇)𝐵𝑦 −𝐵𝑦(𝐵 · ∇)𝐵𝑥

𝐵 · ∇ = 𝐵𝑥𝜕𝑥 +𝐵𝑦𝜕𝑦 +𝐵𝑧𝜕𝑧

𝐵 · ∇ ×𝐵 = 𝐵𝑥(𝜕𝑦𝐵𝑧 − 𝜕𝑧𝐵𝑦)+

𝐵𝑦(𝜕𝑧𝐵𝑥 − 𝜕𝑥𝐵𝑧) +𝐵𝑧(𝜕𝑥𝐵𝑦 − 𝜕𝑦𝐵𝑥)

For 2D problems, these can be simplified using

(𝐵 ×∇𝐵)𝑥 = −𝐵𝑧𝜕𝑦𝐵

(𝐵 ×∇𝐵)𝑦 = 𝐵𝑧𝜕𝑥𝐵

(𝐵 ×∇𝐵)𝑧 = 𝐵𝑥𝜕𝑦𝐵 −𝐵𝑦𝜕𝑥𝐵

𝐵 · ∇ = 𝐵𝑥𝜕𝑥 +𝐵𝑦𝜕𝑦

𝐵 · ∇ ×𝐵 = 𝐵𝑥𝜕𝑦𝐵𝑧 −𝐵𝑦𝜕𝑥𝐵𝑧 +𝐵𝑧(𝜕𝑥𝐵𝑦 − 𝜕𝑦𝐵𝑥)
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4.3.3 Spherical Coordinates

The spatial diffusion coefficient is in the same form.

𝜅⊥ =

⎡⎣𝜅⊥𝑟𝑟 𝜅⊥𝑟𝜃 𝜅⊥𝑟𝜑

𝜅⊥𝑟𝜃 𝜅⊥𝜃𝜃 𝜅⊥𝜃𝜑

𝜅⊥𝑟𝜑 𝜅⊥𝜃𝜑 𝜅⊥𝜑𝜑

⎤⎦
where 𝜅⊥𝑖𝑗 = 𝜅⊥𝛿𝑖𝑗 − 𝜅⊥𝑏𝑖𝑏𝑗 , and 𝑖, 𝑗 are 𝑟, 𝜃, 𝜑. The gradients of 𝜅𝑖𝑗 are

𝜕𝑖𝜅⊥𝑖𝑗 = 𝛿𝑖𝑗𝜕𝑖𝜅⊥ − 𝑏𝑖𝑏𝑗𝜕𝑖𝜅⊥ − 𝜅⊥

𝐵
(𝑏𝑗𝜕𝑖𝐵𝑖 + 𝑏𝑖𝜕𝑖𝐵𝑗 − 2𝑏𝑖𝑏𝑗𝜕𝑖𝐵)

We then need to transfer the focused transport equation to the spherical coordinates. Since we don’t have cross-diffusion
terms (spatial and momentum), we can ignore the momentum diffusion for now.

𝜕𝐹

𝜕𝑡
=∇ · (𝜅⊥ · ∇𝐹 )−∇ · [(𝑣𝜇𝑏+ 𝑉 + 𝑉 𝑑)𝐹 ]

+
𝜕

𝜕𝜇2
(𝐷𝜇𝜇𝐹 )− 𝜕

𝜕𝜇

[︂(︂
𝑑𝜇

𝑑𝑡
+

𝜕𝐷𝜇𝜇

𝜕𝜇

)︂
𝐹

]︂
− 𝜕

𝜕𝑝

(︂
𝑑𝑝

𝑑𝑡
𝐹

)︂
The rest is essentially the same as before except for 𝜅⊥, 𝑣𝜇𝑏, and the pitch-angle diffusion terms. We will first need to
change 𝐹 to 𝐹1 = 𝐹 sin 𝜃𝑟2 [Jokipii77] [Pei10]. The resulting SDEs are

𝑑𝑟 =
𝑑𝑟

𝑑𝑡
𝑑𝑡+ [𝑃.𝑑𝑊𝑡]𝑟

𝑑𝜃 =
𝑑𝜃

𝑑𝑡
𝑑𝑡+ [𝑃.𝑑𝑊𝑡]𝜃

𝑑𝜑 =
𝑑𝜑

𝑑𝑡
𝑑𝑡+ [𝑃.𝑑𝑊𝑡]𝜑

𝑑𝑝 =
𝑑𝑝

𝑑𝑡
𝑑𝑡

𝑑𝜇 =

(︂
𝑑𝜇

𝑑𝑡
+

𝜕𝐷𝜇𝜇

𝜕𝜇

)︂
𝑑𝑡+

√︀
2𝐷𝜇𝜇𝑑𝑊𝜇(𝑡)

where
𝑑𝑟

𝑑𝑡
= 𝑣𝜇𝑏𝑟 + 𝑉𝑟 + 𝑉𝑑𝑟 +

𝜕𝜅⊥𝑟𝑟

𝜕𝑟
+

2

𝑟
𝜅⊥𝑟𝑟 +

1

𝑟

𝜕𝜅⊥𝑟𝜃

𝜕𝜃
+

cos 𝜃

𝑟 sin 𝜃
𝜅⊥𝑟𝜃 +

1

𝑟 sin 𝜃

𝜕𝜅⊥𝑟𝜑

𝜕𝜑

𝑑𝜃

𝑑𝑡
=

𝑣𝜇𝑏𝜃 + 𝑉𝜃 + 𝑉𝑑𝜃

𝑟
+

1

𝑟

𝜕𝜅⊥𝑟𝜃

𝜕𝑟
+

𝜅⊥𝑟𝜃

𝑟2
+

1

𝑟2
𝜕𝜅⊥𝜃𝜃

𝜕𝜃
+

cos 𝜃

𝑟2 sin 𝜃
𝜅⊥𝜃𝜃 +

1

𝑟2 sin 𝜃

𝜕𝜅⊥𝜃𝜑

𝜕𝜑

𝑑𝜑

𝑑𝑡
=

𝑣𝜇𝑏𝜑 + 𝑉𝜑 + 𝑉𝑑𝜑

𝑟 sin 𝜃
+

1

𝑟 sin 𝜃

𝜕𝜅⊥𝑟𝜑

𝜕𝑟
+

𝜅⊥𝑟𝜑

𝑟2 sin 𝜃
+

1

𝑟2 sin 𝜃

𝜕𝜅⊥𝜃𝜑

𝜕𝜃
+

1

𝑟2 sin2 𝜃

𝜕𝜅⊥𝜑𝜑

𝜕𝜑

To calculate 𝑑𝜇/𝑑𝑡 and 𝑑𝑝/𝑑𝑡, we will need

−𝑏 · ∇ ln𝐵 = − 1

𝐵

(︂
𝑏𝑟𝜕𝑟𝐵 +

𝑏𝜃
𝑟
𝜕𝜃𝐵 +

𝑏𝜑
𝑟 sin 𝜃

𝜕𝜑𝐵

)︂
∇ · 𝑉 = 𝜕𝑟𝑉𝑟 +

2𝑉𝑟

𝑟
+

1

𝑟
𝜕𝜃𝑉𝜃 +

cos 𝜃

𝑟 sin 𝜃
𝑉𝜃 +

1

𝑟 sin 𝜃
𝜕𝜑𝑉𝜑

𝑏𝑖𝑏𝑗
𝜕𝑉𝑖

𝜕𝑥𝑗
is more complicated.

𝑏𝑖𝑏𝑗
𝜕𝑉𝑖

𝜕𝑥𝑗
=𝑏2𝑟𝜕𝑟𝑉𝑟 +

𝑏𝑟𝑏𝜃
𝑟

𝜕𝜃𝑉𝑟 +
𝑏𝑟𝑏𝜑
𝑟 sin 𝜃

𝜕𝜑𝑉𝑟 −
𝑏𝑟𝑏𝜃𝑉𝜃 + 𝑏𝑟𝑏𝜑𝑉𝜑

𝑟
+

𝑏𝑟𝑏𝜃𝜕𝑟𝑉𝜃 +
𝑏2𝜃
𝑟
𝜕𝜃𝑉𝜃 +

𝑏𝜃𝑏𝜑
𝑟 sin 𝜃

𝜕𝜑𝑉𝜃 +
𝑏2𝜃𝑉𝑟

𝑟
− cot 𝜃𝑏𝜃𝑏𝜑𝑉𝜑

𝑟
+

𝑏𝑟𝑏𝜑𝜕𝑟𝑉𝜑 +
𝑏𝜃𝑏𝜑
𝑟

𝜕𝜃𝑉𝜑 +
𝑏2𝜑

𝑟 sin 𝜃
𝜕𝜑𝑉𝜑 +

𝑏2𝜑𝑉𝑟

𝑟
+

cot 𝜃𝑏2𝜑𝑉𝜃

𝑟
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Similar for 𝑏𝑖𝑉𝑗
𝜕𝑉𝑖

𝜕𝑥𝑗
,

𝑏𝑖𝑉𝑗
𝜕𝑉𝑖

𝜕𝑥𝑗
=𝑏𝑟𝑉𝑟𝜕𝑟𝑉𝑟 +

𝑏𝑟𝑉𝜃

𝑟
𝜕𝜃𝑉𝑟 +

𝑏𝑟𝑉𝜑

𝑟 sin 𝜃
𝜕𝜑𝑉𝑟 −

𝑏𝑟(𝑉
2
𝜃 + 𝑉 2

𝜑 )

𝑟
+

𝑏𝜃𝑉𝑟𝜕𝑟𝑉𝜃 +
𝑏𝜃𝑉𝜃

𝑟
𝜕𝜃𝑉𝜃 +

𝑏𝜃𝑉𝜑

𝑟 sin 𝜃
𝜕𝜑𝑉𝜃 +

𝑏𝜃𝑉𝜃𝑉𝑟

𝑟
−

cot 𝜃𝑏𝜃𝑉
2
𝜑

𝑟
+

𝑏𝜑𝑉𝑟𝜕𝑟𝑉𝜑 +
𝑏𝜑𝑉𝜃

𝑟
𝜕𝜃𝑉𝜑 +

𝑏𝜑𝑉𝜑

𝑟 sin 𝜃
𝜕𝜑𝑉𝜑 +

𝑏𝜑𝑉𝜑𝑉𝑟

𝑟
+

cot 𝜃𝑏𝜑𝑉𝜑𝑉𝜃

𝑟

For 1D probelms, 𝐹1 = 𝑓𝑝2𝑟2, and the corresponding SDE for 𝑟 is

𝑑𝑟 =

(︂
𝑣𝜇𝑏𝑟 + 𝑉𝑟 +

𝜕𝜅⊥𝑟𝑟

𝜕𝑟
+

2

𝑟
𝜅⊥𝑟𝑟

)︂
𝑑𝑡+

√
2𝜅⊥𝑟𝑟𝑑𝑊𝑡

For 𝑑𝜇 and 𝑑𝑝, we will need

−𝑏 · ∇ ln𝐵 =− 1

𝐵
𝑏𝑟𝜕𝑟𝐵

∇ · 𝑉 =𝜕𝑟𝑉𝑟 +
2𝑉𝑟

𝑟

𝑏𝑖𝑏𝑗
𝜕𝑉𝑖

𝜕𝑥𝑗
=𝑏2𝑟𝜕𝑟𝑉𝑟 −

𝑏𝑟𝑏𝜃𝑉𝜃 + 𝑏𝑟𝑏𝜑𝑉𝜑

𝑟
+

𝑏𝑟𝑏𝜃𝜕𝑟𝑉𝜃 +
𝑏2𝜃𝑉𝑟

𝑟
− cot 𝜃𝑏𝜃𝑏𝜑𝑉𝜑

𝑟
+

𝑏𝑟𝑏𝜑𝜕𝑟𝑉𝜑 +
𝑏2𝜑𝑉𝑟

𝑟
+

cot 𝜃𝑏2𝜑𝑉𝜃

𝑟

𝑏𝑖𝑉𝑗
𝜕𝑉𝑖

𝜕𝑥𝑗
=𝑏𝑟𝑉𝑟𝜕𝑟𝑉𝑟 −

𝑏𝑟(𝑉
2
𝜃 + 𝑉 2

𝜑 )

𝑟
+

𝑏𝜃𝑉𝑟𝜕𝑟𝑉𝜃 +
𝑏𝜃𝑉𝜃𝑉𝑟

𝑟
−

cot 𝜃𝑏𝜃𝑉
2
𝜑

𝑟
+

𝑏𝜑𝑉𝑟𝜕𝑟𝑉𝜑 +
𝑏𝜑𝑉𝜑𝑉𝑟

𝑟
+

cot 𝜃𝑏𝜑𝑉𝜑𝑉𝜃

𝑟

For 2D problems (𝑟 − 𝜃 plane), 𝐹1 = 𝑓𝑝2𝑟2 sin 𝜃, and the corresponding SDEs are

𝑑𝑟 =

(︂
𝑣𝜇𝑏𝑟 + 𝑉𝑟 +

𝜕𝜅⊥𝑟𝑟

𝜕𝑟
+

2

𝑟
𝜅⊥𝑟𝑟 +

1

𝑟

𝜕𝜅⊥𝑟𝜃

𝜕𝜃
+

cos 𝜃

𝑟 sin 𝜃
𝜅⊥𝑟𝜃

)︂
𝑑𝑡+ [𝑃.𝑑𝑊𝑡]𝑟

𝑑𝜃 =

(︂
𝑣𝜇𝑏𝜃 + 𝑉𝜃

𝑟
+

1

𝑟

𝜕𝜅⊥𝑟𝜃

𝜕𝑟
+

𝜅⊥𝑟𝜃

𝑟2
+

1

𝑟2
𝜕𝜅⊥𝜃𝜃

𝜕𝜃
+

cos 𝜃

𝑟2 sin 𝜃
𝜅⊥𝜃𝜃

)︂
𝑑𝑡+ [𝑃.𝑑𝑊𝑡]𝜃
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where 𝑃 has the same form as the one in Parker transport. For 𝑑𝜇 and 𝑑𝑝, we will need

−𝑏 · ∇ ln𝐵 =− 1

𝐵

(︂
𝑏𝑟𝜕𝑟𝐵 +

𝑏𝜃
𝑟
𝜕𝜃𝐵

)︂
∇ · 𝑉 =𝜕𝑟𝑉𝑟 +

2𝑉𝑟

𝑟
+

1

𝑟
𝜕𝜃𝑉𝜃 +

cos 𝜃

𝑟 sin 𝜃
𝑉𝜃

𝑏𝑖𝑏𝑗
𝜕𝑉𝑖

𝜕𝑥𝑗
=𝑏2𝑟𝜕𝑟𝑉𝑟 +

𝑏𝑟𝑏𝜃
𝑟

𝜕𝜃𝑉𝑟 −
𝑏𝑟𝑏𝜃𝑉𝜃 + 𝑏𝑟𝑏𝜑𝑉𝜑

𝑟
+

𝑏𝑟𝑏𝜃𝜕𝑟𝑉𝜃 +
𝑏2𝜃
𝑟
𝜕𝜃𝑉𝜃 +

𝑏2𝜃𝑉𝑟

𝑟
− cot 𝜃𝑏𝜃𝑏𝜑𝑉𝜑

𝑟
+

𝑏𝑟𝑏𝜑𝜕𝑟𝑉𝜑 +
𝑏𝜃𝑏𝜑
𝑟

𝜕𝜃𝑉𝜑 +
𝑏2𝜑𝑉𝑟

𝑟
+

cot 𝜃𝑏2𝜑𝑉𝜃

𝑟

𝑏𝑖𝑉𝑗
𝜕𝑉𝑖

𝜕𝑥𝑗
=𝑏𝑟𝑉𝑟𝜕𝑟𝑉𝑟 +

𝑏𝑟𝑉𝜃

𝑟
𝜕𝜃𝑉𝑟 −

𝑏𝑟(𝑉
2
𝜃 + 𝑉 2

𝜑 )

𝑟
+

𝑏𝜃𝑉𝑟𝜕𝑟𝑉𝜃 +
𝑏𝜃𝑉𝜃

𝑟
𝜕𝜃𝑉𝜃 +

𝑏𝜃𝑉𝜃𝑉𝑟

𝑟
−

cot 𝜃𝑏𝜃𝑉
2
𝜑

𝑟
+

𝑏𝜑𝑉𝑟𝜕𝑟𝑉𝜑 +
𝑏𝜑𝑉𝜃

𝑟
𝜕𝜃𝑉𝜑 +

𝑏𝜑𝑉𝜑𝑉𝑟

𝑟
+

cot 𝜃𝑏𝜑𝑉𝜑𝑉𝜃

𝑟

The drift velocity

𝑉 𝑑 =
𝑐𝑝𝑣

𝑞𝐵

{︂
1− 𝜇2

2

𝐵 ×∇𝐵

𝐵2
+ 𝜇2𝐵 × [(𝐵 · ∇)𝐵]

𝐵3
+

1− 𝜇2

2

𝐵(𝐵 · ∇ ×𝐵)

𝐵3

}︂
Calculations needed for the first term (gradient drift):

(∇𝐵)𝑟 = 𝜕𝑟𝐵; (∇𝐵)𝜃 =
𝜕𝜃𝐵

𝑟
; (∇𝐵)𝜑 =

𝜕𝜑𝐵

𝑟 sin 𝜃
(𝐵 ×∇𝐵)𝑟 = 𝐵𝜃(∇𝐵)𝜑 −𝐵𝜑(∇𝐵)𝜃

(𝐵 ×∇𝐵)𝜃 = 𝐵𝜑(∇𝐵)𝑟 −𝐵𝑟(∇𝐵)𝜑

(𝐵 ×∇𝐵)𝜑 = 𝐵𝑟(∇𝐵)𝜃 −𝐵𝜃(∇𝐵)𝑟

Calculations needed for the second term (curvature drift):

𝐶 = (𝐵 · ∇)𝐵

𝐶𝑟 = 𝐵𝑟𝜕𝑟𝐵𝑟 +
𝐵𝜃

𝑟
𝜕𝜃𝐵𝑟 +

𝐵𝜑

𝑟 sin 𝜃
𝜕𝜑𝐵𝑟 −

𝐵2
𝜃 +𝐵2

𝜑

𝑟

𝐶𝜃 = 𝐵𝑟𝜕𝑟𝐵𝜃 +
𝐵𝜃

𝑟
𝜕𝜃𝐵𝜃 +

𝐵𝜑

𝑟 sin 𝜃
𝜕𝜑𝐵𝜃 +

𝐵𝑟𝐵𝜃

𝑟
−

cot 𝜃𝐵2
𝜑

𝑟

𝐶𝜑 = 𝐵𝑟𝜕𝑟𝐵𝜑 +
𝐵𝜃

𝑟
𝜕𝜃𝐵𝜑 +

𝐵𝜑

𝑟 sin 𝜃
𝜕𝜑𝐵𝜑 +

𝐵𝑟𝐵𝜑

𝑟
+

cot 𝜃𝐵𝜃𝐵𝜑

𝑟
(𝐵 ×𝐶)𝑟 = 𝐵𝜃𝐶𝜑 −𝐵𝜑𝐶𝜃

(𝐵 ×𝐶)𝜃 = 𝐵𝜑𝐶𝑟 −𝐵𝑟𝐶𝜑

(𝐵 ×𝐶)𝜑 = 𝐵𝑟𝐶𝜃 −𝐵𝜃𝐶𝑟

Calculations needed for the third term (parallel drift):

(∇×𝐵)𝑟 =
𝜕𝜃(sin 𝜃𝐵𝜑)

𝑟 sin 𝜃
− 𝜕𝜑𝐵𝜃

𝑟 sin 𝜃
=

𝜕𝜃𝐵𝜑

𝑟
+

cos 𝜃

𝑟 sin 𝜃
𝐵𝜑 − 𝜕𝜑𝐵𝜃

𝑟 sin 𝜃

(∇×𝐵)𝜃 =
𝜕𝜑𝐵𝑟

𝑟 sin 𝜃
− 𝜕𝑟(𝑟𝐵𝜑)

𝑟
=

𝜕𝜑𝐵𝑟

𝑟 sin 𝜃
− 𝜕𝑟𝐵𝜑 − 𝐵𝜑

𝑟

(∇×𝐵)𝜑 =
𝜕𝑟(𝑟𝐵𝜃)

𝑟
− 𝜕𝜃𝐵𝑟

𝑟
= 𝜕𝑟𝐵𝜃 +

𝐵𝜃

𝑟
− 𝜕𝜃𝐵𝑟

𝑟
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CHAPTER

FIVE

DEVELOPMENT

5.1 Implementation Details

This section provides an overview of the code implementation details. The code solves particle transport equations
using stochastic differential equations (SDEs). To solve the SDEs, the code uses pseudo particles to sample the particle
distributions. The code is designed to be modular and scalable. It is parallelized using MPI and OpenMP and can
handle large-scale 3D simulations. The code is organized into several modules, each of which is responsible for a
specific aspect of the simulation. See the next section for more details. In general, the code needs to read MHD data,
interpolate it at particle positions, evolve the particles, and produce diagnostics.

• Initialization Phase:

– Set up the simulation parameters (simulation_setup_module, mhd_config, and mpi_module).

– Read the MHD data from files (mhd_data_parallel)

– Initialize the particle data (particle_module).

– Initialize diagnostics (diagnostics).

• Main Simulation Loop:

– Inject pseudo particles (particle_module).

– Interpolate MHD data to particle positions (mhd_data_parallel).

– Evolve particles using SDEs and MHD fields (particle_module, random_number_generator).

• Diagnostics and Data Handling:

– Produce diagnostics of the simulation (diagnostics).

– Handle data read/write operations (hdf5_io, mpi_io).

5.1.1 Module Structure

The code is organized into several modules to improve modularity and maintainability. The modules are saved in src/
modules directory. These modules are used by src/stochastic_mhd.f90 to perform the simulation. The main
modules include:

Note: This section needs to be updated to include more details about each of these modules.

• particle_module: This module contains particle data and the methods to inject, remove, and push particles.
All the core algorithms of SDE are implemented in this module.
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• mhd_data_parallel: This module contains the data structures and methods to initialize and read MHD simu-
lation data. It also contains the methods to calculate the gradients of these fields and to interpolate the MHD data
to the particle positions. Additionally, this module also includes the methods for spatially dependent turbulence
correlation length and turbulence amplitude.

• simulation_setup_module: This module contains the methods to set up the simulation parameters, such as
the simulation MPI topology, the MHD field configuration, particle boundary conditions, and neighbors of local
MPI domains.

• hdf5_io: This module contains the methods to create, open, close, read and write data in HDF5 format. It can
deal with data up to 5D and with/without parallel I/O.

• mhd_config: This module contains the methods to read the MHD configuration file and to set up the MHD
simulation parameters, including the grid and time stamps if needed.

• constants: This module contains constants used in the simulation.

• diagnostics: This module contains the methods to diagnose the simulations, such as the particle distribution
functions, particle data, escaped particle data, and methods for quick checks as the simulation proceeds.

• mpi_io: This module contains the methods to read and write data in parallel using MPI-IO.

• mpi_module: This module contains the methods to set up the MPI topology and to communicate between dif-
ferent MPI domains.

• random_number_generator: This module contains the methods to generate random numbers using the
Mersenne Twister algorithm.

• read_confg: This module contains the methods to read the simulation configuration file.

• acc_region_surface: This module contains the methods for the surface to separate the acceleration region
and the non-acceleration region. It is useful when we want to isolate certain particle acceleration regions, for
example, near the shock front.

5.2 Particle Module

This section provides an overview of the particle module, including the particle data structure, the methods for injecting,
removing, and pushing particles.

5.2.1 Particle Data Structure

type particle_type
integer(i1) :: split_times !< Particle splitting times
integer(i1) :: count_flag !< Only count particle when it is 1
integer(i4) :: origin !< The origin MPI rank of the particle
integer(i4) :: nsteps_tracked !< # of tracked steps in MHD data interval
integer(i4) :: nsteps_pushed !< # of steps have been pushed
integer(i4) :: tag_injected !< Particle tag 1 when injected
integer(i4) :: tag_splitted !< Particle tag 2 after splitting
real(dp) :: x, y, z, p !< Position and momentum
real(dp) :: v, mu !< Velocity and cosine of pitch-angle
real(dp) :: weight, t, dt !< Particle weight, time and time step

end type particle_type

• x, y, z: position of the particle in the simulation domain. The positions are in the global coordinate system. For
spherical coordinates, x is the radial distance 𝑟, y is the polar angle 𝜃, and z is the azimuthal angle 𝜑.
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• p: momentum magnitude of the particle.

• v: velocity magnitude of the particle. We typically assume non-relativistic particles, so that 𝑣 ∼ 𝑝.

• mu: cosine of the pitch angle of the particle.

• weight: weight of the particle. The weight is initialized to be 1.0. When a particle reaches certain momentum,
it will be splitted into two identical particles with half of the weight. Due to stochastic nature of the process,
these particles will evolve differently after the splitting.

• t: time of the particle. The time is initialized to be the time when particle is injected.

• dt: time step of the particle. The time step is adaptive and is updated at each time step.

• split_times: number of times the particle has been splitted.

• count_flag: flag to count the particle. If the flag is 1, the particle will be counted when accumulating particle
distributions. When the flag is negative (-1 to -6), it means that the particle has escaped from one of the six
boundaries of the simulation domain (for 2D, -1 to -4 for the four boundaries). When the flag is 0, the particle
has negative momentum and will be removed from the simulation.

• origin: the origin MPI rank of the particle. Combined with particle tag_injected and tag_splitted, it
can be used to identify the particle for particle tracking.

• nsteps_tracked: number of steps the particle has been tracked in the MHD data interval. It will be reset to 0
at the start of the MHD data interval.

• nsteps_pushed: number of steps the particle has been pushed since they are injected. It is useful when tracking
particles. It will accummulate to nsteps_interval and then reset to 0 once the tracked particle is recorded.

• tag_injected: tag of the particle when it is injected. The tag is unique on each MPI rank.

• tag_splitted: tag of the particle after it is splitted. The tag is unique on each MPI rank.

Note: The tag of a particle only unique on each MPI rank. When combined with the origin MPI rank, the particle can
be uniquely identified in the simulation. Since tag_splitted is a integer4, the maximum number of particles that
one particle can be splitted into is 2^31. If the number of particles exceeds this limit, it means that we probably need
to use a larger split_ratio.

5.2.2 Particle Tracking

As described above, we can track particles using the combination of tag_injected, tag_splitted, and origin. The
particle tracking is useful for diagnosing how the particles are accelerated and transported. To get the particle tracking
information, we need to runt the simulation twice. The first run is a regular run. We need to run the simulation to a
certain time frame and dump the particles (also included in the restart files). Then, we need to use a post-processing tool
(e.g., a Python script) to select the particles we want to track and save the particle information to a file. The second run is
a tracking run. We need to set track_particle_flag = .true. in the input file and set the particle_tags_file
to the file that contains the particle information. The tracking run is similar to the regular run except that we need to
load the particle_tags_file and use the information to identify the particles we want to track.

• When a particle is injected, the particle is assigned with an origin MPI rank and a tag_injected, which
starts from 0 and increases by 1 for each particle injected on each MPI rank. When the particle is splitted, the
tag_splitted is assigned to the particle. tag_splitted starts from 1. When one particle is splitted into two
particles, each particle has a half of the original weight. One of the two particles has the same tag_splitted as
the original particle, and the other has the tag_splitted=tag_splitted_original+2**(split_times-1).
The split_times is the number of times the particle has been splitted. The tag_splitted is used to identify
the particle after it is splitted. The combination of tag_injected, tag_splitted, and origin can be used to
uniquely identify the particle in the simulation.
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• The first time we run the simulation, we need to set track_particle_flag = .false. in the input file. The
particle information will be saved in the restart files. We can use the restart files to get the particle information.
We can use a Python script to select the particles we want to track. For example, we can select the partilces with
the highest energies form the particle file using the following script.

tframe = 200
run_name = sde_run_config["run_name"]
fname = "../data/" + run_name + "/restart/particles_" + str(tframe).zfill(4) + ".h5"
with h5py.File(fname, 'r') as fh:

p = fh["p"][:]
tag_injected = fh["tag_injected"][:]
tag_splitted = fh["tag_splitted"][:]
origin = fh["origin"][:]
split_times = fh["split_times"][:]

sort_index = np.argsort(p)
psort = p[sort_index]
tag_injected_sort = tag_injected[sort_index]
tag_splitted_sort = tag_splitted[sort_index]
origin_sort = origin[sort_index]
split_times_sort = split_times[sort_index]
nptl_selected = 1000
# select the highest-energy particles
origin_s = origin_sort[-nptl_selected:]
tag_injected_s = tag_injected_sort[-nptl_selected:]
tag_splitted_s = tag_splitted_sort[-nptl_selected:]
split_times_s = split_times_sort[-nptl_selected:]
# trace back to the injected particle
nsplit_max = np.max(split_times_s)
tags_all = np.zeros([nptl_selected, nsplit_max+2], dtype=np.int32)
tags_all[:, 0] = origin_s # the first col is the origin
tags_all[:, 1] = tag_injected_s # the second col is tag_injected
for iptl in range(nptl_selected):

nsplit = split_times_s[iptl]
if nsplit > 0:

tags_all[iptl, nsplit+1] = tag_splitted_s[iptl]
for isplit in range(nsplit, 1, -1):

if tags_all[iptl, isplit+1] > 2**(isplit-1):
tags_all[iptl, isplit] = tags_all[iptl, isplit+1] - 2**(isplit-1)

else:
tags_all[iptl, isplit] = tags_all[iptl, isplit+1]

# sort by the origin, tag_injected, and then all tag_splitted
ind = np.lexsort(tags_all[:, ::-1].T)
tags_all_sorted = tags_all[ind]
# save the selected particles to a file
odir = "../data/" + run_name + "/particle_tracking/"
mkdir_p(odir)
fname = odir + "tags_selected_01.h5"
with h5py.File(fname, 'w') as fh:

fh.create_dataset("tags", tags_all_sorted.shape, data=tags_all_sorted)

• The second time we run the simulation, we need to set track_particle_flag = .true. in the input file.
We need to set the particle_tags_file to the file that contains the particle information. The tracking run
is similar to the regular run except that we need to load the particle_tags_file and use the information to
identify the particles we want to track.
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• The simulation will output tracked particle information every MHD intervel. The files are saved in
particle_tracking under the diagnostic directory. We can get all the particle information using a script
like the following.

fdir = "../data/" + run_name + "/particle_tracking/"
ts, te = 51, 200
nframes = te - ts + 1
fname = fdir + "particles_tracked_" + str(ts).zfill(4) + ".h5"
with h5py.File(fname, "r") as fh:

x = fh["x"][:, :]
nptl_tracking, nsteps_tracked = x.shape
t = np.zeros([nptl_tracking, nsteps_tracked*nframes])
x = np.zeros([nptl_tracking, nsteps_tracked*nframes])
y = np.zeros([nptl_tracking, nsteps_tracked*nframes])
p = np.zeros([nptl_tracking, nsteps_tracked*nframes])
tag_splitted = np.zeros([nptl_tracking, nsteps_tracked*nframes])
for tframe in range(ts, te+1):

fname = fdir + "particles_tracked_" + str(tframe).zfill(4) + ".h5"
it1 = (tframe - ts) * nsteps_tracked
it2 = it1 + nsteps_tracked
with h5py.File(fname, "r") as fh:

t[:, it1:it2] = fh["t"][:, :]
x[:, it1:it2] = fh["x"][:, :]
y[:, it1:it2] = fh["y"][:, :]
p[:, it1:it2] = fh["p"][:, :]
tag_splitted[:, it1:it2] = fh["tag_splitted"][:, :]

To plot one particle trajectory, we can use, for example,

iptl = 100
ind = t[iptl, :] > 0
plt.plot(x[iptl, ind], y[iptl, ind])
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