

    
      
          
            
  
Welcome to GPAT’s documentation!

GPAT (Global Particle Acceleration and Transport)  is a program for solving particle transport equations. It solves either Parker’s transport equation for nearly isotropic particle distributions or the focused transport equations for anisotropic particle distributions. The code uses the stochastic integration method to solve these equations. For details on the algorithms implemented, please check out the theory section.


Contact us

If you’re beginning to use GPAT or have any questions, feel free to drop by the discussions page[#1]. For bug reports or to request new features, you can also open a new issue[#2].
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Footnotes



[#1]
https://github.com/xiaocanli/stochastic-parker/discussions



[#2]
https://github.com/xiaocanli/stochastic-parker/issues





            

          

      

      

    

  

    
      
          
            
  
Installation

This package uses a Multiple stream Mersenne Twister
PRNG[#1]
to generated the required random numbers. This package uses
FLAP[#2] to deal with comand line
arguments. The FLAP pacakge is recommended to install using the
FoBiS.py[#3], which is a building system for Fortran projects. Currently, the code can only be run on CPUs.


Requirments


	Programs that are commonly installed on HPC clusters


	Git: for cloning the code from GitHub


	CMake: 3.9.0 or higher


	GCC or Intel Fortran compilers.


	MPI: OpenMPI or MPICH. It should work with the others.


	HDF5: parallel version.





Tip

On Perlmutter@NERSC, you can load the modules by module load cpu cmake cray-hdf5-parallel





	FoBiS.py[#4]: a building system for Fortran projects


	The installation wiki:
https://github.com/szaghi/FoBiS/wiki/Install.


	It is recommended to use PyPI to install it:
pip install FoBiS.py --user


	After installing, make sure that FoBiS.py is in your $PATH by including

export PATH=$HOME/.local/bin/:$PATH





in your .bashrc.







	Multiple stream Mersenne Twister
PRNG[#5]: for generating pseudorandom numbers parallelly.


This program module splits single long period random number series from Mersenne Twister (MT) into multiple (almost) independent streams.





	Download:
http://theo.phys.sci.hiroshima-u.ac.jp/~ishikawa/PRNG/mt_stream_f90.tar.gz


	Load the same packages as listed above.

tar zxvf mt_stream_f90.tar.gz
cd mt_stream_f90-1.11





Depending on the system type, you might need to modify FC in Makefile by hand. The default is ifort, which is for the Intel compilers. For gfortran, please use the script config/gfortran_mt_stream.sh to make the relevant changes in Makefile. First, copy the script to mt_stream_f90-1.11. Then,

./gfortran_mt_stream.sh






Note

If you are using newer versions of gfortran, there will be compiling errors. Therefore, we need to update the source code slightly using config/fix_mt_stream.sh. First, copy the script to mt_stream_f90-1.11. Then,

./fix_mt_stream.sh









	You can then compile the code by

make







	After compiling the code, you need to set the environment variable MT_STREAM to the installation directory. For example,


export MT_STREAM=$HOME/local/mt_stream_f90-1.11








This environment variable will be used to compile the GPAT code.


Tip

You can put this into your .bashrc.













Download

git clone https://github.com/xiaocanli/stochastic-parker







Install

In the directory stochastic-parker,

mkdir build
cd build
cmake ..
make
make install





To turn on OpenMP parallelization, please use cmake -DUSE_OPENMP="On" ... To turn on AVX512 for the KNL nodes, please also include -DUSE_AVX512="On".


Tip

On Perlmutter@NERSC, you can load the modules by module load cpu cmake cray-hdf5-parallel python




Note

Please use the same version of python as when installing FoBiS.py. Otherwise, FLAP will not be compiled correctly.




Note

The code is not carefully optimized for the KNL nodes. Please use it in caution.



You can create a soft link of the executable stochastic-mhd.exec in the scratch filesystem for running the code.



Footnotes



[#1]
http://theo.phys.sci.hiroshima-u.ac.jp/~ishikawa/PRNG/mt_stream_en.html



[#2]
https://github.com/szaghi/FLAP



[#3]
https://github.com/szaghi/FoBiS



[#4]
https://github.com/szaghi/FoBiS



[#5]
http://theo.phys.sci.hiroshima-u.ac.jp/~ishikawa/PRNG/mt_stream_en.html





            

          

      

      

    

  

    
      
          
            
  
Usage


Introduction

The code uses MHD simulation results to evolve the particle distribution functions according to the transport equations. The MHD quantities used include magnetic field, velocity field, and maybe plasma density.


Note

The plasma density might be used to calculate the local Alfvén speed.



In general, the modeling procedure includes


	Run the MHD simulations and get the MHD fields.


	Pre-process the MHD results to provide the input data for the GPAT model.


	Calculate the input parameters, including the spatial diffusion coefficient, parameters for evaluating the momentum diffusion coefficient, parameters for evaluating the particle drift, etc.


	Modify the configuration for the transport modeling.


	Run the simulation.


	Analyze and visualize the results.




Below, we will use a 2D magnetic reconnection problem to illustrate the procedure in more detail.



Example: 2D Magnetic Reconnection

Here, we use a 2D reconnection problem solved with Parker’s transport equation as an example. The relevant code and scripts are in examples/reconnection_2d.


Note

More examples will be included in the future.




Run the MHD simulation

Please follow the instructions in athena_reconnection[#1] to run a reconnection simulation with two current sheets and periodic boundary conditions. The input file for the Athena++ simulation is code/athinput.reconnection in athena_reconnection[#2]. The simulation domain size is [0, 2] \(\times\) [0,2]. The grid size is \(1024\times1024\). The simulation will last 20 Alfven-crossing time and produce 200 frames of data of the primary variables (reconnection.prim*.athdf) in default.



Pre-process the MHD data

Instead of directly processing the data from different MHD codes (e.g., VTK files by Athena and HDF5 files by Athena++) in the simulations, we will reorganize the MHD simulation outputs using Python scripts first. The example scripts for Athena and Athena++ outputs are in mhd_data. There is a shell script reorganize_data.sh for running the Python scripts with commandline arguments.

./reorganize_data.sh





which will include 2 ghost cells at each boundary according to the boundary conditions (periodic or open).


Note

Due to their stochastic nature, the pseudo particles can cross the local domain boundaries multiple times in a short time, significantly increasing the MPI communication cost. We choose two ghost cells to enable particles to stay in the local domain when they are near the boundaries. The two ghost cells also make calculating the gradients of the fields easier at the boundaries. This could be improved in the future.



The script will generate the MHD fields (in bindary format) and the simulation configuration needed for the transport modelings in bin_data under the MHD run directory.


	mhd_data_*: \(v_x, v_y, v_z, \rho, B_x, B_y, B_z, B\), which have a size of \(1028\times1028\).


	rho_*: plasma density (\(1028\times1028\))


	pre_*: plasma pressure (\(1028\times1028\))


	mhd_config.dat: the MHD configuration information. See the function save_mhd_config in mhd_data/reorganize_fields.py for the details of the configuration.






Calculate the input parameters

Before transport modeling, we need to calculate the parallel diffusion coefficient \(\kappa_\parallel\) using the simulation normalizations (length scale, magnetic field, plasma density, turbulence amplitude and anisotropy). There is a Python script sde.py for doing that. The default parameters are ideal and similar to those used in [1]. Running the script will give a set of parameters. We will only need Normed kappa parallel for now, which is 7.43592e-03 in default.


Note

The script needs plasmapy for the particle properties (e.g., mass and charge) and the calculation of different plasma parameters.





Particle transport modeling


	Go the the directory (e.g., $SCRATCH/transport_test) where you link the executable stochastic-mhd.exec.


	Create a directory config under transport_test and copy conf.dat and diffusion_reconnection.sh in stochastic-parker/examples/reconnection_2d into config.





Note

The input parameters are given through two files: conf.dat and diffusion_reconnection.sh. You will notice that there are many input parameters, some of which are through conf.dat, and the others are through command-line arguments. The parameters in conf.dat are read by the code; the parameters in diffusion_reconneciton.sh are used as the command-line arguments of the main program stochastic-mhd.exec. The command-line arguments are from the earlier design. As the program evolves, more and more command-line arguments are needed, making it tedious to run the simulation. In the future, it will be better to put some of the command-line arguments into a configuration file (e.g., conf.dat).




	Change kpara0 in function stochastic () in diffusion_reconnection.sh to the value calculated above.


	Change mhd_run_dir and run_name (at the bottom of diffusion_reconnection.sh) to your choices.




To check all the available command-line arguments,

srun -n 1 ./stochastic-mhd.exec -h





Or you can check the comments in diffusion_reconnection.sh.


Note

Now, the input paramters are described at Input Parameters.



For this test run, you don’t need to change these input parameters. The default name of the transport run is transport_test_run. We can request an interactive node to run the test, for example, on Perlmutter@NERSC,

salloc --nodes 1 --qos interactive --time 04:00:00 --constraint cpu --account=m4054
module load cpu cray-hdf5-parallel
./diffusion_reconnection.sh





It will take about one hour to run the simulation. The output files are in data/athena_reconnection_test/transport_test_run.


Warning

The binary outputs of the particle distributions have been deprecated. The new outputs are saved in the same HDF5 file fdists_****.h5. The corresponding analysis scripts need to be updated to read the HDF5 outputs.


	fdpdt-*.dat: the energization rate (only the compression is included for now).


	fp-*.dat: the global momentum distributions.


	fp_local-*.dat: the local momentum distributions.


	fxy-*.dat: the local particle densities in different energy bands. They are similar to fp_local-*.dat but only for a few energy bands.






The outputs include


	quick.dat: the parameters to diagnose the simulation status during runtime.


	pmax_global.dat: the maximum momentum at the same time frames in quick.dat.


	fdists_****.h5: particle distributions, including the global distribution, local distributions, and the relevant bins. The dimensions of the distributions are controlled in the input file conf.dat: npp_global, nmu_global, dump_interval*, pmin*, pmax**, npbins*, nmu*, rx*, ry*, rz*. When running Parker’s transport, nmu_global and nmu* defaults to 1.




fdists_****.h5 contains the following quantities.


	fglobal: global particle distribution with a size of [npp_global, nmu_global]


	pbins_edges_global: global momentum bins edges with a size of [npp_global+1]


	mubins_edges_global: global cosine of pitch-angle bins edges with a size of [nmu_global+1]


	flocal*: local particle distributions with a size of [nz_mhd/rx*, ny_mhd/ry*, nz_mhd/rz*, npbins*, nmu*], where nx_mhd, ny_mhd, and nz_mhd are the dimensions of the MHD simulation. In this 2D example, nz_mhd=1, and the first dimension of flocal* is 1.


	pbins_edges*: local momentum bins edges with a size of [npbins*+1]


	mubins_edges*: local cosine of pitch-angle bins edges with a size of [nmu*+1]






Visualize the results

The relevant files for plotting are in examples/reconnection_2d/vis. Please copy the files to a directory of your choice for data analysis, for example, $SCRATCH/transport_test/python. Please also copy python/sde_util.py into the same directory. We will use the Jupyter notebook transport_test.ipynb to plot the results. The notebook needs information about the MHD simulation (mhd_runs_for_sde.json) and the SDE run (spectrum_config.json).


Note

The two JSON files will keep tracking the information of MHD runs and the SED runs for each MHD simulation, respectively. We recommend keeping the records in this kind of JSON file.



For mhd_runs_for_sde.json, please change run_dir to your reocnnection simulation directory. In spectrum_config.json,



	run_name: a unique name for the SDE run starting from the MHD run name


	e0: the energy normalization in keV (default: 10 keV)


	xlim_e, ylim_e: the limites for the energy spectrum plots







The rest of the parameters in spectrum_config.json are not commonly used and will be deprecated in the future.

After running the Jupyter Notebook, you will get the time evolution of the global energy spectrum shown below. The different colors indicate the spectra at different time frames.

[image: _images/espect_transport_test_run.jpg]
We can also get the spatial distributions of local particle distributions at the final time step. The four left panels show the electron distributions in four energy bands with corresponding scaling factors. The rightmost panel shows the vertical through the center of the reconnection region at \(x=0\).

[image: _images/nrho_high_200.jpg]
Both the spectra and the spatial distributions show that the acceleration is weak. The reason is that the compression in the MHD simulation is not strong. The acceleration will be stronger in MHD simulations with higher Lundquist numbers and resolutions.


Note

The notebook includes the script to read the global and local particle distributions. You can perform further analysis of the particle distributions.






What are not included in this description?

The code currently supports many functionalities that are not included here. Those will be gradually included in future updates of the documentation, for example,


	Different particle injection methods (e.g., spatially dependent injection)


	Particle-splitting techniques


	Particle tracking


	Momentum diffusion


	Spatially dependent turbulence properties


	3D simulations


	Spherical coordinates






[1]
Large-scale Compression Acceleration during Magnetic Reconnection in a Low-β Plasma, Xiaocan Li, Fan Guo, Hui Li, and Shengtai Li, The Astrophysical Journal Oct 2018



[#1]
https://github.com/xiaocanli/athena_reconnection



[#2]
https://github.com/xiaocanli/athena_reconnection







            

          

      

      

    

  

    
      
          
            
  
Input Parameters

The input parameters are mostly in script diffusion*.sh (e.g., diffusion_reconnection.sh for the 2D reconnection example). A few others are in conf*.dat (e.g., conf.dat for the 2D reconnection example). The input parameters are explained below.


diffusion.sh


	MACHINE: either Frontera or Perlmutter. Perlmutter is the default.


	quota_hour: the maximum wall time in hours. The code dump restart files if the simulation is not finished when the wall time is reached (30 mins before that in the code). The restart files are saved in the restart sub-directory under the diagnostic directory. These are data files particles_*.h5 for particle data, mtss.mpi_rank.thread_id for the state of the random number generators, particle_module_stare_*.h5 for the state of the particle module, and latest_restart for the last time frame before duming restart files.


	restart_flag: whether the simulation is a restart from previous simulations. .false. is the default, which means it is not a restart. .true. means it is a restart. When it is a restart, the code will read the particle data and random_number_generater from the previous simulation and continue the simulation from the last time step.


	conf: the name of the configuration file. conf.dat is the default.


	mhd_config_filename: the name of the MHD configuration file. mhd_config.dat is the default.


	focused_transport: whether to solve the focused transport equation. .false. is the default, which means solving the Parker transport equation.


	mpi_size: the total number of MPI processes.


	ntasks_per_node: the number of MPI processes per node.


	size_mpi_sub: the size of an MPI sub-communicator. 1 is the default, which means there is only one MPI communicator (MPI_COMM_WORLD). If not 1, the total number of MPI processes must be divisible by size_mpi_sub. The MPI communications are done within each sub-communicator. In this way, we don’t need to divide the domain into too many sub-domains, which is not efficient for MPI communications. To get the global properties (e.g., global particle spectrum), we will use the cross-communicators.


	nptl: the total number of particles for one MPI process.


	nptl_max: the maximum number of particles for one MPI process. If the number of particles exceeds nptl_max, we will stop injecting more particles or splitting particles. Typically, we can choose up to 10 million.


	ts: the start time step.


	te: the end time step.


	tmax_mhd: the maximum time frame for the MHD fields. Typically, tmax_mhd is larger than te, so the transport modeling will have enough MHD fields to use. When tmax_mhd is smaller than te, there are two cases: 1) when single_time_frame=1 (discussed below), the code will keep running until te; 2) when single_time_frame=0, the code will stop reading MHD fields after tmax_mhd and use the last MHD fields for the rest of the simulation.


	single_time_frame: whether to use only one-time frame. 0 is the default, which means using multiple time frames (from ts to te). 1 means using only one time frame (ts). Then, the simulation will run te-ts+1 time steps using the same MHD fields.


	time_interp: whether to interpolate in-between time frames. 1 is the default, which means interpolation. 0 means no interpolation.


	dist_flag: the initial particle distribution. 0 is the default, which means Maxwellian. 1 means delta function. 2 means power-law.


	power_index: the power-law index for the initial momentum distribution if dist_flag=2.


	split_flag: whether to split particles when they reach certain momentum. 0 is the default, which means no splitting. 1 means splitting.


	split_ratio: the momentum increase ratio for particle splitting. Assuming the particle’s initial momentum is p0, the particle will be splitted into two particles once the particle momentum reaches p0*split_ratio. The rul of thumb is to set split_ratio to be around \(2^{1/\gamma}\), where \(\gamma\) is the power-law index for the particle momentum distribution.


	pmin_split: the minimum momentum (in p0) to start splitting particles. Instead of starting from p0, we can start from a higher momentum to avoid splitting too many particles at low momentum. It is particularly important when injecting Maxwellian particles, where the number of particles is large at low momentum.


	local_dist: whether to diagnose local particle distribution.


	dump_escaped_dist: whether to dump the escaped particle distributions, either .true or .false. If .false., the particles will be removed once they escape from the boundaries. Otherwise, the escaped particles will be accumulated in one MHD data interval. The distributions of the escaped particles are stored in files escaped_dist_*.h5. They have the same grid sizes as the local particle distributions but with one dimension less. For example, if we have a 3D simulation, the escaped particle distributions will be 2D for the low-x, high-x, low-y, high-y, low-z, and high-z boundaries.





Warning

The escaped particle distributions are only dumped when local_dist=.true.. When local_dist=.false., the escaped particle distributions will not be dumped event if dump_escaped_dist=.true..




	dump_escaped: whether to dump the escaped particles. dump_escaped_dist has to be .true. for this to work. If dump_escaped_dist=.false., the raw data of the escaped particles will be dumped. Otherwise, only the distributions of the escaped particles will be dumped. Note that the raw data of the escaped particles can be large. It is not recommended to dump the raw data of the escaped particles unless you want to analyze the raw data in detail.


	track_particle_flag: whether to track particles. .false. is the default, which means not tracking particles. .true. means tracking particles. When tracking particles, we will select nptl_selected particles with the highest energy, rerun the simulation, and output the trajectories of these particles.


	particle_tags_file: the file name for the particle tags. It is used to select the particles to track. The file tags_selected_*.h5 has one dataset tags. The dataset is a 1D array of integers. These tags can be obtained from analyzing the particle data. For example, we can select the particles with the highest energy or particles in certain regions and output their tags to the file tags_selected_*.h5. The file is located in the same directory as the diagnostic directory.


	nsteps_interval: the steps interval to track particles. If it is 1, we will track particles at every time step. If it is 10, we will track particles at every 10 steps. Particles can be evolves for millions of time steps. It is not recommended to track particles at every time step unless you want to analyze the particle trajectories in great detail.


	inject_new_ptl: whether to inject new particles at every step. The values are .true. or .false.. .true. means injecting new particles at every MHD step. .false. means only injecting particles at the beginning.


	inject_same_nptl: whether to inject the same number of particles every step. .true. is the default, which means injecting the same number of particles. .false. means injecting a different number of particles every step. Then, the number of injected particles depends on how particles are injected (see below). inject_same_nptl only works when inject_new_ptl=.true..


	tmax_to_inject: the maximum time frame to inject particles. It is used to stop injecting particles after some time. It is useful, for example, when we want to run simulations for a long time but only inject particles at the beginning. Note that tmax_to_inject should be larger than ts. Note that it only works when inject_new_ptl=.true..


	inject_part_box: whether to inject particles in part of the simulation box. .false. is the default, which means injecting particles in the whole box. .true. means injecting particles in part of the box.


	ptl_xmin: the minimum x coordinate for particle injection. It is the absolute coordinate.


	ptl_xmax: the maximum x coordinate for particle injection.


	ptl_ymin: the minimum y coordinate for particle injection.


	ptl_ymax: the maximum y coordinate for particle injection.


	ptl_zmin: the minimum z coordinate for particle injection.


	ptl_zmax: the maximum z coordinate for particle injection.


	inject_large_jz: whether to inject particles where jz is large. .false. is the default, which means not injecting particles where jz is large. .true. means injecting particles where jz is large.


	jz_min: the minimum jz for injection when inject_large_jz=.true.. It is to make sure that the particles are only injected in regions with large jz. It is useful for reconnection simulations, where we might want to inject particles in the reconnection region. Depending on the simulation, we might need to adjust this value because each simulation has a different jz range or different normalizations. Note that inject_large_jz=.true., inject_large_absj=.true., inject_large_db2=.true.,  inject_large_divv=.true., and inject_large_rho=.true. are exclusive. Only one of them can be .true..


	ncells_large_jz_norm: the normalization for the number of cells with large jz. It is used to determine the number of particles to inject. The number of particles to inject is nptl*ncells(jz>jz_min)/ncells_large_jz_norm, where ncells(jz>jz_min) is the number of cells with jz larger than jz_min.


	inject_large_absj: whether to inject particles where |j| is large. .false. is the default, which means not injecting particles where |j| is large. .true. means injecting particles where |j| is large.


	absj_min: the minimum |j| for injection when inject_large_absj=.true.. It is to make sure that the particles are only injected in regions with large |j|.


	ncells_large_absj_norm: the normalization for the number of cells with large |j|. It is used to determine the number of particles to inject. The number of particles to inject is nptl*ncells(|j|>absj_min)/ncells_large_absj_norm, where ncells(|j|>absj_min) is the number of cells with |j| larger than absj_min.


	inject_large_db2: whether to inject particles where turbulence amplitude (db2) is large. .false. is the default, which means not injecting particles where db2 is large. .true. means injecting particles where db2 is large. When inject_large_db2=.true., the code needs to read an additional file deltab*.dat to get the turbulence amplitude.


	db2_min: the minimum db2 for injection when inject_large_db2=.true.. It is to make sure that the particles are only injected in regions with large db2. It is useful for reconnection simulations, where we might want to inject particles in the reconnection region, where reconnection-driven turbulence can be intense.


	ncells_large_db2_norm: the normalization for the number of cells with large db2. It is used to determine the number of particles to inject. The number of particles to inject is nptl*ncells(db2>db2_min)/ncells_large_db2_norm, where ncells(db2>db2_min) is the number of cells with db2 larger than db2_min.





Note

The functionality of inject_large_db2 is not fully tested. It is not recommended to use it for now. Additionally, we need to understand spatially dependent turbulence amplitude better.




	inject_large_divv: whether to inject particles where flow compression divv is negatively large. .false. is the default, which means not injecting particles where divv is negatively large. .true. means injecting particles where divv is negatively large.


	divv_min: the minimum divv for injection when inject_large_divv=.true.. This is to make sure that the particles are only injected in regions with large volumes. It is useful for reconnection or shock simulations, where we might want to inject particles near regions with strong flow compression.


	ncells_large_divv_norm: the normalization for the number of cells with large divv. It is used to determine the number of particles to inject. The number of particles to inject is nptl*ncells(|divv|>|divv_min|)/ncells_large_divv_norm, where ncells(|div|>|divv_min|) is the number of cells with |divv| larger than |divv_min|.


	inject_large_rho: whether to inject particles where density is large. .false. is the default, which means not injecting particles where density is large. .true. means injecting particles where density is large.


	rho_min: the minimum density for injection when inject_large_rho=.true.. It is to make sure that the particles are only injected in regions with large density.


	ncells_large_rho_norm: the normalization for the number of cells with large density. It is used to determine the number of particles to inject. The number of particles to inject is nptl*ncells(rho>rho_min)/ncells_large_rho_norm, where ncells(rho>rho_min) is the number of cells with density larger than rho_min.


	dpp_wave: whether to include momentum diffusion due to wave scattering. 0 is the default, which means not including momentum diffusion due to wave scattering. 1 means including momentum diffusion due to wave scattering.


	dpp_shear: whether to include momentum diffusion due to flow shear. 0 is the default, which means not including momentum diffusion due to flow shear. 1 means including momentum diffusion due to flow shear.


	weak_scattering: whether particle scattering is in the weak-scattering regime. 1 is the default, which means the weak-scattering regime. 0 means the strong-scattering regime.


	deltab_flag: whether to have spatially dependent turbulence amplitude. 0 is the default, which means that the turbulence amplitude is spatially uniform. 1 means having spatially dependent turbulence amplitude. When deltab_flag=1, the code needs to read an additional file deltab*.dat to get the turbulence amplitude.


	correlation_flag: whether to have spatially dependent turbulence correlation length. 0 is the default, which means that the turbulence correlation length is spatially uniform. 1 means having spatially dependent turbulence correlation length. When correlation_flag=1, the code needs to read an additional file lc*.dat to get the turbulence correlation length.





Note

The functionalities of deltab_flag and corrlation_flag are not fully tested. It is not recommended to use them for now. Additionally, we need to understand spatially dependent turbulence amplitude and correlation length better.




	ndim_field: the dimension of the field. The values can be 1, 2, or 3. 1 means 1D simulation, but it is not fully tested.


	drift_param1: the parameter 1 for particle drift. It is used to determine the drift velocity. See the Theory section for details.


	drift_param2: the parameter 2 for particle drift. It is used to determine the drift velocity. See the Theory section for details.


	charge: the charge of the particle in unit charge. -1 is the default, which means electron.


	spherical_coord: whether the grid is spherical. 0 is the default, which means the grid is Cartesian. 1 means the grid is spherical.


	uniform_grid: whether the grid is uniform. 1 is the default, which means the grid is uniform. 0 means the grid is non-uniform. Then, we need to the coordinates of the grid points in files xpos.dat, ypos.dat, and zpos.dat, located in the same directory as the MHD configuration file.


	check_drift_2d: whether to check particle drift in 2D simulations. 0 is the default, which means not checking particle drift in 2D simulations. 1 means checking particle drift in 2D simulations. It is useful for 2D simulations, where we can check how much particles drift along the out-of-plane direction.


	particle_data_dump: whether to dump particle data. 0 is the default, which means not dumping particle data. 1 means dumping particle data. When dumping particle data, the code will output the particle data at every output time step. The particle data are stored in files particles_*.h5. Since particle data can be large, it is not recommended to dump particle data unless you want to analyze the particle data.


	include_3rd_dim: whether to include transport along the 3rd-dim in 2D simulations. 0 is the default, which means not including transport along the 3rd-dim in 2D simulations. 1 means including transport along the 3rd-dim in 2D simulations. It is useful for 2D simulations, where we can check how much particles transport along the out-of-plane direction.


	acc_by_surface: whether the acceleration region is separated by a surface. 0 is the default, which means the acceleration region is not separated by a surface. 1 means the acceleration region is separated by a surface. Then, we need to specify the surface file name and the normal direction of the surface to get the 2D surfaces that separate the acceleration region. The surface file name is specified by surface_filename1 and surface_filename2. The normal direction of the surface is specified by surface_norm1 and surface_norm2. The surface normal direction can be +x, -x, +y, -y, +z, or -z. It is useful when we want to selectively turn on/off particle acceleration in certain regions. For example, we can turn on particle acceleration only in the reconnection region or termination shock region in flare simulations. To get the 2D surfaces separating different acceleration regions, we need to write our own scripts to look into the MHD simulation data.





Note

The functionality of acc_by_surface is not fully tested. It is not recommended to use it for now. Example scripts to get the 2D surfaces separating different acceleration regions will be provided later.




	surface2_existed: whether the second surface exists. 0 is the default, which means the second surface does not exist. Then, we only have two regions. 1 means the second surface exists. Then, we will have acceleration regions separated by these two surfaces.


	varying_dt_mhd: whether the time interval for MHD fields is varying. 0 is the default, which means the time interval for MHD fields is uniform. 1 means the time interval for MHD fields is varying. It is useful when the MHD simulation has varying time intervals. For example, the MHD simulation might have a large time interval at the beginning and a small time interval later. Then, we can use varying_dt_mhd=1 to use the varying time interval for MHD fields. When varying_dt_mhd=1, the code needs to read an additional file time_stamps.dat to get the time stamps for each MHD frame. The file is located in the same directory as the MHD data files.




Then, the script will modify the configuration file conf.dat. The parameters in conf.dat are explained below. Additionally, a few other parameters are modified in this script for more flexibility.


	tau0_scattering: the scattering time for initial particles. It is only used for momentum diffusion due to wave scattering. It is not used for Parker transport. The parameters are calculated based on the initial particle momentum and turbulence properties in sde.py.


	duu0: the normalization for pitch-angle diffusion coefficient. It is only used in the focused transport equation. The parameters are calculated based on the initial particle momentum and turbulence properties in sde.py.


	particle_v0: the particle speed/velocity normalization. It is only used in the focused transport equation. The parameters are calculated based on the initial particle momentum and turbulence properties in sde.py.


	dir_mhd_data: the directory for MHD simulation data.


	diagnostic_directory: the directory for diagnostics data.






conf.dat


	b0: initial magnetic field strength (deprecated).


	p0: initial particle momentum. Its value is arbitrary. 0.1 is typically used so that the particle momentum is not too small or too large. Note that p0 corresponds to particles with the input diffusion coefficients.


	pmin: the minimum particle momentum. It is used when injecting particles and when calculating the global particle spectrum. It is typically set to 1E-2.


	pmax: the maximum particle momentum. It is used when injecting particles and when calculating the global particle spectrum. It is typically set to 1E1.


	momentum_dependency: whether the diffusion coefficients depend on particle momentum. 1 is the default, which means the diffusion coefficients depend on particle momentum. 0 means the diffusion coefficients do not depend on particle momentum.


	pindex: the power-law index for the momentum dependency of the diffusion coefficients. It is only used when momentum_dependency=1. It is typically set to 3-5/3=4/3=1.3333333, where 5/3 is the turbulence spectral slope for the Kolmogorov spectrum. It can be modified in difffusion.sh when using different turbulence models.


	mag_dependency: whether the diffusion coefficients depend on magnetic field strength. 1 is the default, which means the diffusion coefficients depend on magnetic field strength. 0 means the diffusion coefficients do not depend on magnetic field strength.


	kpara0: the normalization for the parallel diffusion coefficient. It is calculated based on the initial particle momentum, magnetic field, and turbulence properties in sde.py.


	kret: the ratio of the perpendicular diffusion coefficient to the parallel diffusion coefficient. It is typically set to less than 0.1.


	dt_min: the minimum time step allowed to avoid infinite time step.


	dt_min_rel: the minimum relative time step w.r.t. one field time interval. dt_min is set to dt_min_rel times the time interval for MHD fields if the latter is larger than dt_min.





Note

The time step is adaptive. It is calculated based on the particle momentum, magnetic field, pitch angle, and diffusion coefficients. The rule of thumb for dt_min_rel is 1E-6. For MHD simulations with lower resolution, it can be up to 1E-4. For MHD simulations with very high resolutions, a large dt_min_rel might lead to wrong results in these high-resolution simulations, while a small dt_min_rel might lead to a long simulation time. We suggest doing a convergence test to get the optimal value.




	dt_max_rel: the maximum relative time step w.r.t. one field time interval to avoid a time step too large, which could cause the particles to jump over multiple grid cells.


	npp_global: the number of momentum bins for the global particle spectrum.


	nmu_global: the number of pitch-angle bins for global particle distributions.


	dump_interval1: the interval to dump local particle distributions. It is only used when local_dist=1 in diffusion.sh.


	pmin1: the minimum particle momentum for local particle distributions.


	pmax1: the maximum particle momentum for local particle distributions.


	npbins1: the number of momentum bins for local particle distributions.


	nmu1: the number of pitch-angle bins for local particle distributions.


	rx1: reduced factor along the x direction for local particle distributions. For every rx1 grid cell along the x direction, we will have one bin for local particle distributions.


	ry1: reduced factor along the y direction for local particle distributions. For every ry1 grid cell along the y direction, we will have one bin for local particle distributions.


	rz1: reduced factor along the z-direction for local particle distributions. For every rz1 grid cell along the z direction, we will have one bin for local particle distributions.





Note

The other three local distributions are similar. We can adjust the number of bins and reduce factors to get different distributions. For example, we can get a distribution with higher resolution in the momentum space and lower resolution in the pitch-angle space by increasing npbins and decreasing nmu. Or we can get distributions with higher momentum resolution but coarse spatial resolution by increasing rx, ry, and rz.




Note

We only dump local distributions every few MHD output intervals. When dump_interval is larger than the number of MHD outputs, it will not dump the distribution. In this way, we don’t have to dump all four kinds of local distributions.




	acc_region_flag: whether to turn on particle acceleration in certain regions. 0 is the default, which means turning on particle acceleration in the entire region. 1 means turning on particle acceleration in certain regions. When acc_region_flag=1, we need to specify the acceleration region. The acceleration region is specified by acc_xmin, acc_xmax, acc_ymin, acc_ymax, acc_zmin, and acc_zmax. These are the relative values from 0 to 1. The acceleration region is a box with the minimum coordinate (acc_xmin, acc_ymin, acc_zmin) and the maximum coordinate (acc_xmax, acc_ymax, acc_zmax). It is useful when we want to selectively turn on/off particle acceleration in certain regions. For example, we can turn on particle acceleration only in the reconnection region or termination shock region in flare simulations. If we set acc_xmax or acc_ymax or acc_zmax to negative values, the acceleration in the entire simulation domain will be turned off.


	pbcx: the boundary condition for particles along the x direction. 0 is the default, which means periodic boundary condition. 1 means open boundary condition.


	pbcy: the boundary condition for particles along the y direction. 0 is the default, which means periodic boundary condition. 1 means open boundary condition.


	pbcz: the boundary condition for particles along the z direction. 0 is the default, which means periodic boundary condition. 1 means open boundary condition.





Note

Additional boundary conditions should be included in the future, such as reflecting boundary condition.




	mpi_sizex: the number of MPI processes along the x direction. It is default to 1 when size_mpi_sub=1. Otherwise, mpi_sizex*mpi_sizey*mpi_sizez should be equal to size_mpi_sub.


	mpi_sizey: the number of MPI processes along the y direction. It is default to 1 when size_mpi_sub=1. Otherwise, mpi_sizex*mpi_sizey*mpi_sizez should be equal to size_mpi_sub.


	mpi_sizez: the number of MPI processes along the z direction. It is default to 1 when size_mpi_sub=1. Otherwise, mpi_sizex*mpi_sizey*mpi_sizez should be equal to size_mpi_sub.





Note

When size_mpi_sub>1 in diffusion.sh. mpi_sizex*mpi_sizey*mpi_sizez should be equal to size_mpi_sub. Otherwise, the code will stop.
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Introduction

The GPAT code was initially developed by Fan Guo [1]. It has been updated over the years. Recent papers using this code can be found at Publications. The code solves particle transport equations, including Parker’s transport equation and focused transport equation, using the stochastic integration method. It is supposed to be used for studying particle acceleration and transport at scales much larger than the kinetic scales.

The code solves the equation using the stochastic integration method since the Fokker-Planck form of the transport equation is equivalent to a set of the stochastic differential equations (SDEs) of Ito type [2]. The SDEs are solved using a large number of pseudo particles.

It uses MHD simulation data (magnetic field, velocity, density, etc.) as background to evolve the transport equations. It has been used in studying particle acceleration and transport in magnetic reconnection, solar flares, and solar eruption regions.

The simulations will produce spatially and temporally dependent energy spectra and maps of energetic particles. See Usage for how to get these from MHD simulation outputs.



[1]
https://ui.adsabs.harvard.edu/abs/2010ApJ…725..128G/abstract[#1]



[2]
https://en.wikipedia.org/wiki/Fokker%E2%80%93Planck_equation



[#1]
https://ui.adsabs.harvard.edu/abs/2010ApJ...725..128G/abstract
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The Equation Solved

Parker’s transport equation


(1)\[\frac{\partial f}{\partial t} + (\boldsymbol{V}+\boldsymbol{V}_d)\cdot\nabla f
  - \frac{1}{3}\nabla\cdot\boldsymbol{V}\frac{\partial f}{\partial\ln p}
  = \nabla\cdot(\boldsymbol{\kappa}\nabla f) + Q,\]

where \(f(x_i, p, t)\) is the particle distribution function as a function of the particle position \(x_i\),  momentum \(p\) (isotropic momentum assumed), and time \(t\); \(\boldsymbol{\kappa}\) is the spatial diffusion coefficient tensor, \(\boldsymbol{V}\) is the bulk plasma velocity, \(\boldsymbol{V}_d\) is the particle drift, and \(Q\) is the source. In general, \(\boldsymbol{V}\) can be obtained directly from the MHD simulations, \(\boldsymbol{V}_d\) and \(\boldsymbol{\kappa}\) both depend on the vector magnetic field, and \(Q\) could depend on many plasma properties (e.g., number density, current density, and compression). \(\boldsymbol{\kappa}\) also depends on the turbulence properties (e.g., amplitude, spectral slope, and anisotropy). The diffusion coefficient tensor is given by


\[\kappa_{ij} = \kappa_\perp\delta_{ij} -
  \frac{(\kappa_\perp-\kappa_\parallel)B_iB_j}{B^2},\]

where \(\kappa_\parallel\) and \(\kappa_\perp\) are the parallel
and perpendicular diffusion coefficients. Here \(\kappa_\parallel\)
can be calculated from the quasi-linear
theory [Jokipii71]. Assuming that
magnetic turbulence is well developed and has an isotropic power
spectrum \(P\sim k^{-5/3}\), the resulting
\(\kappa_\parallel\sim p^{4/3}\) when the particle gyroradius is
much smaller than the correlation length of turbulence. In particular,
we use the following expression for
\(\kappa_\parallel\) [Giacalone99],


(2)\[\begin{split}\begin{aligned}
  \kappa_\parallel(v) & = \frac{3v^3}{20L_c\Omega_0^2\sigma^2}
  \csc\left(\frac{3\pi}{5}\right)\left[1+\frac{72}{7}
  \left(\frac{\Omega_0L_c}{v}\right)^{5/3}\right]\\
  & \approx1.622\frac{v^{4/3}L_c^{2/3}}{\Omega_0^{1/3}\sigma^2}
\end{aligned}\end{split}\]

where \(v\) is the particle speed, \(L_c\) is the turbulence
correlation length, \(\Omega_0\) is the particle gyrofrequency, and
\(\sigma^2=\left<\delta B^2\right>/B_0^2\) is the normalized wave
variance of turbulence. Reference [Giacalone99] gave
a derivation of equ_kpara_qlt . Below is
summary of it with some missing details. The velocity-dependent parallel
diffusion coefficient is


\[\kappa_\parallel(v) = \frac{v^2}{4}\int_0^1 \frac{(1-\mu^2)^2d\mu}{D_{\mu\mu}}\]

where \(\mu\) is cosine of the pitch angle and \(D_{\mu\mu}\)
the pitch-angle diffusion coefficient. \(D_{\mu\mu}\) is related to
magnetic field fluctuations.


\[D_{\mu\mu} = \frac{\pi}{4}\Omega_0(1-\mu^2)\frac{k_\text{res}P(k_\text{res})}{B_0^2}\]

where \(\Omega_0\) is particle gyrofrequency,
\(k_\text{res}=|\Omega_0/v\mu|\) is the resonant wavenumber. The
above equation is strictly applicable only for the case of 1D turbulence
in which the wavevectors are aligned with the mean field. For
anisotropic turbulence (e.g., 2D + slab), only the slab turbulence
(about 20% of all turbulent
fluctuations [Bieber96]) affect particle
parallel transport [Florinski03]. The
turbulence power is usually expressed as


\[P(k) = \frac{\left<\delta B^2\right>}{1+(kL_c)^\gamma}\left[\int_{k_\text{min}}^{k_\text{max}}\frac{dk}{1+(kL_c)^\gamma}\right]^{-1}\]

where \(k_\text{min}\) and \(k_\text{max}\) are the smallest and
largest wavenumbers in the system, \(L_c\) is the turbulence
correlation length, and \(\gamma\) is the turbulence spectrum index
(e.g., 5/3). For \(k_\text{min}\ll 1/L_c \ll k_\text{max}\), the
integral in the above equation can be taken from 0 to \(\infty\).
From the table of integral,
\(\int_0^\infty x^{\mu-1} dx / (1+x^\nu) = \pi\csc(\mu\pi/\nu)/\nu\).
Then,


\[P(k) = \frac{\left<\delta B^2\right>L_c}{1+(kL_c)^\gamma}\left[(\pi/\gamma)\csc(\pi/\gamma)\right]^{-1}\]

The parallel diffusion coefficient is


\[\begin{split}\begin{aligned}
  \kappa_\parallel(v) & = \frac{v^2\csc(\pi/\gamma)}{\Omega_0^2\sigma^2\gamma L_c}\int_0^1(1-\mu^2)|v\mu|\left(1+\left|\frac{\Omega_0}{v\mu}\right|L_c\right)^\gamma d\mu \\
  & = \frac{v^3\csc(\pi/\gamma)}{4\Omega_0^2\sigma^2\gamma L_c}\left[1+ \left(\frac{\Omega_0L_c}{v}\right)^\gamma\frac{8}{(2-\gamma)(4-\gamma)}\right]
\end{aligned}\end{split}\]

where we assume \(v>0\) and \(\gamma<2\). When
\(\gamma=5/3\) (Kolmogorov), we can get
equ_kpara_qlt. (What will happen when
\(\gamma>2\)?).

Test-particle simulations have suggested that
\(\kappa_\perp/\kappa_\parallel\) is about 0.02-0.04 and is nearly
independent of particle
energy [Giacalone99]. There is also
observational evidence suggesting that
\(\kappa_\perp/\kappa_\parallel\) can be quite
large [Dwyer97] [Zhang03].

The Parker transport equation can be solved by integrating the
stochastic differential equation corresponding to the Fokker–Planck form
of the transport
equation [Zhang99] [Florinski09] [Pei10] [Kong17].
Neglecting the source term \(Q\) in
equ_parker and assuming \(F=fp^2\),


\[\begin{aligned}
  \frac{\partial F}{\partial t}
  & = -\nabla\cdot\left[(\nabla\cdot\boldsymbol{\kappa}+\boldsymbol{V})F\right] +
  \frac{\partial}{\partial p} \left[\frac{p}{3}\nabla\cdot\boldsymbol{V} F\right] +
  \nabla\cdot(\nabla\cdot(\boldsymbol{\kappa}F)),
\end{aligned}\]

which is equivalent to a system of stochastic differential equations
(SDEs) of the Ito type.



[Bieber96]
Bieber, J.W., Wanner, W. and Matthaeus, W.H., 1996. Dominant two‐dimensional solar wind turbulence with implications for cosmic ray transport. Journal of Geophysical Research: Space Physics, 101(A2), pp.2511-2522.




[Dwyer97]
Dwyer, J.R., Mason, G.M., Mazur, J.E., Jokipii, J.R., Von Rosenvinge, T.T. and Lepping, R.P., 1997. Perpendicular transport of low-energy corotating interaction region-associated nuclei. The Astrophysical Journal, 490(1), p.L115.




[Florinski03]
Florinski, V., Zank, G.P. and Pogorelov, N.V., 2003. Galactic cosmic ray transport in the global heliosphere. Journal of Geophysical Research: Space Physics, 108(A6).




[Florinski09]
Florinski, V. and Pogorelov, N.V., 2009. Four-dimensional transport of galactic cosmic rays in the outer heliosphere and heliosheath. The Astrophysical Journal, 701(1), p.642.




[Giacalone99]
(1,2,3)
Giacalone, J. and Jokipii, J.R., 1999. The transport of cosmic rays across a turbulent magnetic field. The Astrophysical Journal, 520(1), p.204.




[Jokipii71]
Jokipii, J.R., 1971. Propagation of cosmic rays in the solar wind. Reviews of Geophysics, 9(1), pp.27-87.




[Kong17]
Kong, X., Guo, F., Giacalone, J., Li, H. and Chen, Y., 2017. The acceleration of high-energy protons at coronal shocks: the effect of large-scale streamer-like magnetic field structures. The Astrophysical Journal, 851(1), p.38.




[Pei10]
Pei, C., Bieber, J. W., Burger, R. A., & Clem, J. 2010, Journal of Geophysical Research (Space Physics), 115, A12107




[Zhang99]
Zhang, M., 1999. A Markov stochastic process theory of cosmic-ray modulation. The Astrophysical Journal, 513(1), p.409.




[Zhang03]
Zhang, M., Jokipii, J.R. and McKibben, R.B., 2003. Perpendicular transport of solar energetic particles in heliospheric magnetic fields. The Astrophysical Journal, 595(1), p.493.
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1D & 2D Models

In a 1D model, the Fokker-Planck form of the transport is equivalent to the SDEs


\[\begin{split}dX & = \left(\frac{\partial\kappa}{\partial x} + V_x\right)ds +
  \sqrt{2\kappa} dW_\sigma(s),\\
dp & = -\frac{p}{3}\frac{\partial V_x}{\partial x}ds,\end{split}\]


Note

In a 1D or 2D model, the particle drift \(\boldsymbol{V}_d\) is out of the simulation plane and is not considered here.



where \(dW_\sigma\) is the normalized distributed random number with mean
zero and variance \(\sqrt{\Delta t}\), and \(\Delta t\) is the
time step for stochastic integration. This corresponds to a Wiener
process. Numerical approximation is often used for the Wiener process to
replace the normal distribution. We use a uniform distribution in
\([-\sqrt{3}, \sqrt{3}]\) in the code.


Note

Future tests should be included to test this method thoroughly.



In a 2D model, the corresponding SDEs are


\[\begin{split}dX & = (\nabla\cdot\boldsymbol{\kappa} + \boldsymbol{V})ds +
  \sum_\sigma\boldsymbol{\alpha}_\sigma dW_\sigma(s),\\
dp & = -\frac{p}{3}(\nabla\cdot\boldsymbol{V})ds,\end{split}\]

where
\(\sum_\sigma\alpha_\sigma^\mu\alpha_\sigma^\nu = 2\kappa^{\mu\nu}\).


\[\begin{split}\boldsymbol{\alpha}_1 =
  \begin{pmatrix}
    \sqrt{2\kappa_\perp} \\
    0
  \end{pmatrix}, \quad
  \boldsymbol{\alpha}_2 =
  \begin{pmatrix}
    0 \\
    \sqrt{2\kappa_\perp}
  \end{pmatrix}, \quad
  \boldsymbol{\alpha}_3 =
  \sqrt{2(\kappa_\parallel - \kappa_\perp)}
  \begin{pmatrix}
    B_x/B \\
    B_y/B
  \end{pmatrix}.\end{split}\]

The parameters used at particle locations are calculated from
\(v_x\), \(v_y\), \(B_x\), \(B_y\),
\(\nabla\cdot\boldsymbol{v}\), \(\partial B_x/\partial x\),
\(\partial B_x/\partial y\), \(\partial B_y/\partial x\), and
\(\partial B_y/\partial y\), which are all obtained from the MHD
simulations. We interpolate these parameters to the particle positions
and then calculate the other required parameters:


\[\begin{split}\begin{aligned}
  \frac{\partial\kappa_{xx}}{\partial x} & = \frac{\partial\kappa_\perp}{\partial x} -
  \frac{\partial(\kappa_\perp-\kappa_\parallel)}{\partial x}\frac{B_x^2}{B^2} -
  2(\kappa_\perp-\kappa_\parallel)\frac{\frac{\partial B_x}{\partial x}B_xB-
  \frac{\partial B}{\partial x}B_x^2}{B^3}, \\
  \frac{\partial\kappa_{yy}}{\partial y} & = \frac{\partial\kappa_\perp}{\partial y} -
  \frac{\partial(\kappa_\perp-\kappa_\parallel)}{\partial y}\frac{B_y^2}{B^2} -
  2(\kappa_\perp-\kappa_\parallel)\frac{\frac{\partial B_y}{\partial y}B_yB-
  \frac{\partial B}{\partial y}B_y^2}{B^3}, \\
  \frac{\partial\kappa_{xy}}{\partial x} & =
  -\frac{\partial(\kappa_\perp-\kappa_\parallel)}{\partial x}
  \frac{B_xB_y}{B^2} - (\kappa_\perp-\kappa_\parallel)
  \frac{\left(\frac{\partial B_x}{\partial x}B_y+
  B_x\frac{\partial B_y}{\partial x}\right)B -
  2B_xB_y\frac{\partial B}{\partial x}}{B^3}, \\
  \frac{\partial\kappa_{xy}}{\partial y} & =
  -\frac{\partial(\kappa_\perp-\kappa_\parallel)}{\partial y}
  \frac{B_xB_y}{B^2} - (\kappa_\perp-\kappa_\parallel)
  \frac{\left(\frac{\partial B_x}{\partial y}B_y+
  B_x\frac{\partial B_y}{\partial y}\right)B -
  2B_xB_y\frac{\partial B}{\partial y}}{B^3}, \\
  \frac{\partial B}{\partial x} & = \frac{1}{B}\left(B_x
  \frac{\partial B_x}{\partial x} + B_y\frac{\partial B_y}{\partial x}\right), \\
  \frac{\partial B}{\partial y} & =
  \frac{1}{B}\left(B_x\frac{\partial B_x}{\partial y} +
  B_y\frac{\partial B_y}{\partial y}\right).
\end{aligned}\end{split}\]

where \(\kappa_\parallel\) and \(\kappa_\perp\) can be functions
of \(B_x\), \(B_y\) and \(B\), so
\(\partial \kappa_\parallel/\partial x\),
\(\partial \kappa_\parallel/\partial y\),
\(\partial \kappa_\perp/\partial x\), and
\(\partial \kappa_\perp/\partial y\) still depend on the derivatives
\(\partial B_x/\partial x\), \(\partial B_x/\partial y\),
\(\partial B_y/\partial x\), and \(\partial B_y/\partial y\).
The detailed expressions depend on the diffusion model to choose. Considering the expression of \(\kappa_\parallel\), we get


\[\begin{aligned}
  \frac{\partial\kappa}{\partial x}\sim\kappa\left(
  \frac{2}{3L_c}\frac{\partial L_c}{\partial x} -
  \frac{1}{3B}\frac{\partial B}{\partial x} -
  \frac{1}{\sigma^2}\frac{\partial(\sigma^2)}{\partial x}
  \right)
\end{aligned}\]


Note

We typically assume \(L_c\) and \(\sigma^2\) are spatially independent. However, they could vary spatially in a large system.




Time step criteria

For a 1D problem, the particle moves a distance satisfying \(l_x^2=\text{max}\left(\left<\Delta x\right>^2, \left<\Delta x^2\right>\right)\) [Strauss17], where


\[\begin{aligned}
  \left<\Delta x\right> = \left(V_x + \frac{d\kappa(x)}{dx}\right)\Delta t,
  \quad \left<\Delta x^2\right> = 2\kappa(x)\Delta t,
\end{aligned}\]

and \(l_x\) should be much smaller than the spatial variation scale
of the fields. In this code, we require
\(\left<\Delta x\right>^2 < \left<\Delta x^2\right>\) and choose
\(\Delta t\) so that \(l_x < \delta_x\), where \(\delta_x\)
is the grid size. For the 2D problems, we choose the following criteria
to determine the time step:


\[\begin{split}\begin{aligned}
  \Delta t_x & = \text{min}\left[\frac{(0.5\delta x)^2}{2\kappa_\parallel},
  \frac{2\kappa_\perp} {(V_x + \partial_x\kappa_{xx} + \partial_y\kappa_{xy})^2}\right], \\
  \Delta t_y & = \text{min}\left[\frac{(0.5\delta y)^2}{2\kappa_\parallel},
  \frac{2\kappa_\perp}{(V_y + \partial_y\kappa_{yy} + \partial_x\kappa_{xy})^2}\right],\\
  \Delta t & = \text{min}(\Delta t_x, \Delta t_y).
\end{aligned}\end{split}\]



Higher-order method

To get a higher-order solution, we can use a derivative-free Milstein method [Burrage04] to solve the SDEs. It is different from the usual method due to one more term, which makes it a higher-order method.


Note

This method was used by [Li18] but has since not been supported in default.




\[\begin{split}\begin{aligned}
  dX_t & = f(X_t,t)dt + g(X_t,t)dW_t, \\
  X_{n+1} & = X_n + f_n h + g_n\Delta W_n +
  \frac{1}{2\sqrt{h}}[g(\bar{X}_n)-g_n][(\Delta W_n)^2-h], \\
  \bar{X}_n & = X_n + f_n h + g_n\sqrt{h}, \\
  \Delta W_n & = [W_{t+h}-W_t] \sim \sqrt{h}N(0,1),
\end{aligned}\end{split}\]

where \(X\) corresponds to spatial positions \(x\), \(y\)
and particle momentum \(p\) in our simulation. Here \(f(X_t,t)\)
is the deterministic term, \(g(X_t,t)\) is the probabilistic term,
\(h\) is the time step, and \(N(0,1)\) indicates a normal
distribution, which is substituted with a uniform distribution
\([-\sqrt{3}, \sqrt{3}]\) in our simulations to speed up the
computation.



[Burrage04]
Burrage, K., Burrage, P.M. and Tian, T., 2004. Numerical methods for strong solutions of stochastic differential equations: an overview. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 460(2041), pp.373-402.




[Li18]
Large-scale Compression Acceleration during Magnetic Reconnection in a Low-β Plasma, Xiaocan Li, Fan Guo, Hui Li, and Shengtai Li, The Astrophysical Journal 866, no. 1 (2018): 4.




[Strauss17]
Strauss, R. and Effenberger, F., 2017. A hitch-hiker’s guide to stochastic differential equations. Space Science Reviews, 212(1), pp.151-192.
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3D Model

The relationship
\(\sum_\sigma\alpha_\sigma^\mu\alpha_\sigma^\nu = 2\kappa^{\mu\nu}\)
is actually a matrix decomposition. We need to decompose
\(2\kappa=PP^T\), where
\(P=(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3)\).
In a 2D problem, the third component of \(\boldsymbol{\alpha}_i\) is
essentially 0. In a 3D problem, we need to find all three components of
\(\boldsymbol{\alpha}_i\). We need some linear algebra for that.
Every real symmetric matrix can be written in the form
(https://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix#Real_symmetric_matrices)


\[A=Q\Lambda Q^T\]

where \(Q\) is an orthogonal matrix whose columns are the
eigenvectors of \(A\), and \(\Lambda\) is a diagonal matrix
whose entries are the eigenvalues of \(A\). If the eigenvalues are
non-negative, then the real matrix \(P=Q\Lambda^{1/2}\), and


\[A=Q\Lambda^{1/2}\Lambda^{1/2}Q^T = \frac{PP^T}{2}\]

According to WolframAlpha, the eigenvalue of \(\kappa\) is
\(k_\parallel\), \(k_\perp\), and \(k_\perp\), and the
corresponding eigenvectors are


\[\begin{split}\begin{aligned}
  v_1 = \left(\frac{b_x}{b_z}, \frac{b_y}{b_z}, 1\right), \\
  v_2 = \left(-\frac{b_z}{b_x}, 0, 1\right), \\
  v_3 = \left(-\frac{b_y}{b_x}, 1, 0\right).
\end{aligned}\end{split}\]

where \(b_x=B_x/B\), \(b_y=B_y/B\), and \(b_z=B_z/B\).
\(v_1\), \(v_2\), and \(v_3\) are not unit vectors, and
\(v_2\) and \(v_3\) are not orthogonal to \(v_1\), so we
need to re-organize \(v_2\) and \(v_3\) and normalize the
vectors.


\[\begin{split}\begin{aligned}
  v_1 & = \left(b_x, b_y, b_z\right), \\
  v_2 & = \left(-\frac{b_xb_z}{\sqrt{b_x^2+b_y^2}},
  -\frac{b_yb_z}{\sqrt{b_x^2+b_y^2}}, \sqrt{b_x^2+b_y^2}\right),\\
    v_3 & = \left(-\frac{b_y}{\sqrt{b_x^2+b_y^2}}, \frac{b_x}{\sqrt{b_x^2+b_y^2}}, 0\right)
\end{aligned}\end{split}\]

where \(v_2\) is calculated from the perpendicular component of the
original \(v_2\) w.r.t. \(v_3\). Then,


\[\begin{split}Q =
  \begin{pmatrix}
    b_x & -b_xb_z/\sqrt{b_x^2+b_y^2} & -b_y/\sqrt{b_x^2+b_y^2}\\
    b_y & -b_yb_z/\sqrt{b_x^2+b_y^2} & b_x/\sqrt{b_x^2+b_y^2}\\
    b_z & \sqrt{b_x^2+b_y^2}         & 0
  \end{pmatrix}\end{split}\]


\[\begin{split}\Lambda =
  \begin{pmatrix}
    \kappa_\parallel & 0 & 0\\
    0 & \kappa_\perp & 0 \\
    0 & 0 & \kappa_\perp
  \end{pmatrix}\end{split}\]


\[\begin{split}P = \sqrt{2}Q\Lambda^{1/2} =
  \begin{pmatrix}
    b_x\sqrt{2\kappa_\parallel} & -b_xb_z\sqrt{2\kappa_\perp}/\sqrt{b_x^2+b_y^2} &
    -b_y\sqrt{2\kappa_\perp}/\sqrt{b_x^2+b_y^2}\\
    b_y\sqrt{2\kappa_\parallel} & -b_yb_z\sqrt{2\kappa_\perp}/\sqrt{b_x^2+b_y^2} &
    b_x\sqrt{2\kappa_\perp}/\sqrt{b_x^2+b_y^2}\\
    b_z\sqrt{2\kappa_\parallel} & \sqrt{b_x^2+b_y^2}\sqrt{2\kappa_\perp}         & 0
  \end{pmatrix}\end{split}\]

We can verify that \(PP^T=2\kappa\). For 3D simulation, we need to
calculate more terms of the gradient of the diffusion tensor. The
parameters used at particle locations are calculated from \(V_x\),
\(V_y\), \(V_z\), \(b_x\), \(b_y\), \(b_z\),
\(\nabla\cdot\boldsymbol{V}\), \(\partial_x b_x\),
\(\partial_y b_x\), \(\partial_z b_x\), \(\partial_x b_y\),
\(\partial_y b_y\), \(\partial_z b_y\), \(\partial_x b_z\),
\(\partial_y b_z\), \(\partial_z b_z\).


\[\begin{split}\begin{aligned}
  \partial_x\kappa_{xx} & = \partial_x\kappa_\perp +
  \partial_x(\kappa_\parallel-\kappa_\perp)b_x^2 +
  2(\kappa_\parallel-\kappa_\perp)b_x\partial_xb_x, \\
  \partial_y\kappa_{yy} & = \partial_y\kappa_\perp +
  \partial_y(\kappa_\parallel-\kappa_\perp)b_y^2 +
  2(\kappa_\parallel-\kappa_\perp)b_y\partial_yb_y, \\
  \partial_z\kappa_{zz} & = \partial_z\kappa_\perp +
  \partial_z(\kappa_\parallel-\kappa_\perp)b_z^2 +
  2(\kappa_\parallel-\kappa_\perp)b_z\partial_zb_z, \\
  \partial_x\kappa_{xy} & =
  \partial_x(\kappa_\parallel-\kappa_\perp)b_xb_y +
  (\kappa_\parallel-\kappa_\perp)(\partial_xb_xb_y + b_x\partial_xb_y), \\
  \partial_y\kappa_{xy} & =
  \partial_y(\kappa_\parallel-\kappa_\perp)b_xb_y +
  (\kappa_\parallel-\kappa_\perp)(\partial_yb_xb_y + b_x\partial_yb_y), \\
  \partial_x\kappa_{xz} & =
  \partial_x(\kappa_\parallel-\kappa_\perp)b_xb_z +
  (\kappa_\parallel-\kappa_\perp)(\partial_xb_xb_z + b_x\partial_xb_z), \\
  \partial_z\kappa_{xz} & =
  \partial_z(\kappa_\parallel-\kappa_\perp)b_xb_z +
  (\kappa_\parallel-\kappa_\perp)(\partial_zb_xb_z + b_x\partial_zb_z), \\
  \partial_y\kappa_{yz} & =
  \partial_y(\kappa_\parallel-\kappa_\perp)b_yb_z +
  (\kappa_\parallel-\kappa_\perp)(\partial_yb_yb_z + b_y\partial_yb_z), \\
  \partial_z\kappa_{yz} & =
  \partial_z(\kappa_\parallel-\kappa_\perp)b_yb_z +
  (\kappa_\parallel-\kappa_\perp)(\partial_zb_yb_z + b_y\partial_zb_z)
\end{aligned}\end{split}\]

Or we may prefer to use current code structure that calculates
\(\partial_x B_x\), \(\partial_y B_x\), \(\partial_z B_x\),
\(\partial_x B_y\), \(\partial_y B_y\), \(\partial_z B_y\),
\(\partial_x B_z\), \(\partial_y B_z\), \(\partial_z B_z\).
Then, the derivatives are calculated as


\[\begin{split}\begin{aligned}
  \partial_xB & = b_x\partial_xB_x + b_y\partial_xB_y + b_z\partial_xB_z, \\
  \partial_yB & = b_x\partial_yB_x + b_y\partial_yB_y + b_z\partial_yB_z, \\
  \partial_zB & = b_x\partial_zB_x + b_y\partial_zB_y + b_z\partial_zB_z, \\
  \partial_x\kappa_{xx} & = \partial_x\kappa_\perp +
  \partial_x(\kappa_\parallel-\kappa_\perp)b_x^2 +
  2(\kappa_\parallel-\kappa_\perp)(B_xB\partial_xB_x - B_x^2\partial_x B)/B^3, \\
  \partial_y\kappa_{yy} & = \partial_y\kappa_\perp +
  \partial_y(\kappa_\parallel-\kappa_\perp)b_y^2 +
  2(\kappa_\parallel-\kappa_\perp)(B_yB\partial_yB_y - B_y^2\partial_y B)/B^3, \\
  \partial_z\kappa_{zz} & = \partial_z\kappa_\perp +
  \partial_z(\kappa_\parallel-\kappa_\perp)b_z^2 +
  2(\kappa_\parallel-\kappa_\perp)(B_zB\partial_zB_z - B_z^2\partial_z B)/B^3, \\
  \partial_x\kappa_{xy} & = \partial_x(\kappa_\parallel-\kappa_\perp)b_xb_y +
  (\kappa_\parallel-\kappa_\perp)[(B_y\partial_xB_x + B_x\partial_xB_y)B -
  2B_xB_y\partial_xB] / B^3, \\
  \partial_y\kappa_{xy} & = \partial_y(\kappa_\parallel-\kappa_\perp)b_xb_y +
  (\kappa_\parallel-\kappa_\perp)[(B_y\partial_yB_x + B_x\partial_yB_y)B -
  2B_xB_y\partial_yB] / B^3, \\
  \partial_x\kappa_{xz} & = \partial_x(\kappa_\parallel-\kappa_\perp)b_xb_z +
  (\kappa_\parallel-\kappa_\perp)[(B_z\partial_xB_x + B_x\partial_xB_z)B -
  2B_xB_z\partial_xB] / B^3, \\
  \partial_z\kappa_{xz} & = \partial_z(\kappa_\parallel-\kappa_\perp)b_xb_z +
  (\kappa_\parallel-\kappa_\perp)[(B_z\partial_zB_x + B_x\partial_zB_z)B -
  2B_xB_z\partial_zB] / B^3, \\
  \partial_y\kappa_{yz} & = \partial_y(\kappa_\parallel-\kappa_\perp)b_yb_z +
  (\kappa_\parallel-\kappa_\perp)[(B_z\partial_yB_y + B_y\partial_yB_z)B -
  2B_yB_z\partial_yB] / B^3, \\
  \partial_z\kappa_{yz} & = \partial_z(\kappa_\parallel-\kappa_\perp)b_yb_z +
  (\kappa_\parallel-\kappa_\perp)[(B_z\partial_zB_y + B_y\partial_zB_z)B -
  2B_yB_z\partial_zB] / B^3.
\end{aligned}\end{split}\]


Particle drift velocity

In the 3D model, we need the drift velocity, which is given by


\[\begin{split}\begin{aligned}
  & \boldsymbol{V}_d = \frac{pcw}{3q}\nabla\times\left(\frac{\boldsymbol{B}}{B^2}\right)
  = \frac{1}{3q}\frac{p^2c}{\sqrt{p^2+m^2c^2}}
  \left(\frac{1}{B^2}\nabla\times\boldsymbol{B} -
  \frac{2}{B^3}\nabla B\times\boldsymbol{B}\right) \\
  & \nabla\times\boldsymbol{B} =
  (\partial_y B_z - \partial_z B_y)\hat{i} +
  (\partial_z B_x - \partial_x B_z)\hat{j} +
  (\partial_x B_y - \partial_y B_x)\hat{k} \\
  & \nabla B\times\boldsymbol{B} =
  (B_z\partial_yB - B_y\partial_zB)\hat{i} +
  (B_x\partial_zB - B_z\partial_xB)\hat{j} +
  (B_y\partial_xB - B_x\partial_yB)\hat{k}
\end{aligned}\end{split}\]

where \(p=\gamma m v\) is particle momentum, \(c\) is the speed
of light, \(w=v/c\) is the normalized particle speed, and \(q\)
is particle charge. Using normalized quantities, we have


\[\begin{split}\begin{aligned}
  \tilde{\boldsymbol{V}}_d & = \frac{1}{v_A}\frac{1}{3\tilde{q}e}\frac{\tilde{p}^2p_0^2c}{\sqrt{\tilde{p}^2p_0^2+m^2c^2}}\frac{1}{B_0L_0}
  \left(\frac{1}{\tilde{B}^2}\tilde{\nabla}\times\tilde{\boldsymbol{B}} -
  \frac{2}{\tilde{B}^3}\tilde{\nabla}\tilde{B}\times\tilde{\boldsymbol{B}}\right) \\
  & = \frac{1}{\sqrt{d_1^2\tilde{p}^{-2}+d_2^2\tilde{p}^{-4}}}
  \frac{1}{3\tilde{q}}\left(\frac{1}{\tilde{B}^2}\tilde{\nabla}\times\tilde{\boldsymbol{B}} -
  \frac{2}{\tilde{B}^3}\tilde{\nabla}\tilde{B}\times\tilde{\boldsymbol{B}}\right)
\end{aligned}\end{split}\]

where \(\tilde{\boldsymbol{V}}_d=\boldsymbol{V}_d/v_A\),
\(\tilde{q}=q/e\), \(\tilde{\nabla}=L_0\nabla\),
\(\tilde{\boldsymbol{B}}=\boldsymbol{B}/B_0\),
\(\tilde{p}=p/p_0\), \(d_1=eB_0v_AL_0/(p_0c)\), and
\(d_2=emB_0v_AL_0/p_0^2\). Note that in the code, \(\tilde{p}\)
will be re-normalized. For example, \(\tilde{p}_0=1\) might
correspond to \(\tilde{p}_{n0}=0.1\) in simulations. The
re-normalized numerical momentum
\(\tilde{p}_n=\tilde{p}\tilde{p}_{n0}\). Thus,
\(\tilde{p} = \tilde{p}_n/\tilde{p}_{n0}\) in simulations, and we
need provide \(d_1\) and \(d_2\) based on the normalization.


Note

The velocity normalization \(v_A\) should be changed to \(v_0\) if \(v_0\neq v_A\)
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Momentum Diffusion


Note

Momentum diffusion is only partially supported now.



We can include an momentum diffusion term to the right side of the Parker transport equation.


(1)\[\frac{\partial f}{\partial t} + (\boldsymbol{V}+\boldsymbol{V}_d)\cdot\nabla f
  - \frac{1}{3}\nabla\cdot\boldsymbol{V}\frac{\partial f}{\partial\ln p}
  = \nabla\cdot(\boldsymbol{\kappa}\nabla f) +
  \frac{1}{p^2}\frac{\partial}{\partial p}
  \left(p^2D_{pp}\frac{\partial f}{\partial p}\right) + Q,\]

Neglecting the source term \(Q\) in
equ_parker_2nd and assuming \(F=fp^2\),


\[\begin{split}\begin{aligned}
  \frac{\partial F}{\partial t} =
  & -\nabla\cdot\left[(\nabla\cdot\boldsymbol{\kappa}+\boldsymbol{V}+\boldsymbol{V}_d)F\right] +
  \nabla\cdot(\nabla\cdot(\boldsymbol{\kappa}F)) + \nonumber \\
  & \frac{\partial}{\partial p} \left[\left(\frac{p}{3}\nabla\cdot\boldsymbol{V} -
  \frac{\partial D_{pp}}{\partial p} - \frac{2D_{pp}}{p}\right) F\right] +
  \frac{\partial(D_{pp}F)}{\partial p^2}.
\end{aligned}\end{split}\]

which is equivalent to a system of SDEs of the Ito type,


\[\begin{split}\begin{aligned}
  dX & = (\nabla\cdot\boldsymbol{\kappa} + \boldsymbol{V} + \boldsymbol{V}_d)ds +
  \sum_\sigma\boldsymbol{\alpha}_\sigma dW_\sigma(s) \\
  dp & = \left(-\frac{p}{3}\nabla\cdot\boldsymbol{V} +
  \frac{\partial D_{pp}}{\partial p} + \frac{2D_{pp}}{p}\right)ds +
  \sqrt{2D_{pp}}dW(s)
\end{aligned}\end{split}\]

where
\(\sum_\sigma\alpha_\sigma^\mu\alpha_\sigma^\nu = 2\kappa^{\mu\nu}\),
\(dW\) is the normalized distributed random number with mean zero
and variance \(\sqrt{\Delta t}\), and \(\Delta t\) is the time
step for stochastic integration.


Wave-particle interaction

For a 2D problem,
reference [Skilling75] shows that for forward and
backward propagating Alfvén waves,


\[\begin{split}\begin{aligned}
  \boldsymbol{u} & = \boldsymbol{v}_0 + \left<\frac{3}{2}(1-\mu^2)\frac{\nu^+ - \nu^-}{\nu^+ + \nu^-}\right>,
  \text{ the velocity of mean wave frame} \\
  \kappa_\parallel & = v^2\left<\frac{1-\mu^2}{2(\nu^+ + \nu^-)}\right>,
  \text{ parallel spatial diffusion coefficient} \\
  D_{pp} & = 4\gamma^2m^2v_A^2\left<\frac{1-\mu^2}{2}\frac{\nu^+\nu^-}{\nu^+ + \nu^-}\right>,
  \text{ momentum diffusion coefficient}
\end{aligned}\end{split}\]

where \(\left<\dots\right>\) donates \(\mu\)-average,
\(\nu^+\) and \(\nu^-\) are collision frequency against forward
waves and backward waves, respectively. If \(\nu^+\) is equal to
\(\nu^-\),


\[D_{pp} = \frac{1}{9}\frac{p^2v_A^2}{\kappa_\parallel}\]

where \(p=\gamma mv\) is particle momentum. Depending on the plasma
parameter and wave properties, we may have to use more complicated
models [Schlickeiser89] [Schlickeiser98] [LeRoux07]. The corresponding SDE is


\[\begin{split}\begin{aligned}
  dp & = \left(-\frac{p}{3}\nabla\cdot\boldsymbol{V} + \frac{4pv_A^2}{9\kappa_\parallel}\right)ds +
  \sqrt{\frac{2p^2v_A^2}{9\kappa_\parallel}}dW(s), \text{if $\kappa_\parallel$ is independent of $p$}\\
  dp & = \left(-\frac{p}{3}\nabla\cdot\boldsymbol{V} + \frac{8pv_A^2}{27\kappa_\parallel}\right)ds +
  \sqrt{\frac{2p^2v_A^2}{9\kappa_\parallel}}dW(s), \text{if $\kappa_\parallel\sim p^{4/3}$}
\end{aligned}\end{split}\]

which are normalized to


\[\begin{split}\begin{aligned}
  d\tilde{p}_n & = \left(-\frac{\tilde{p}_n}{3}\tilde{\nabla}\cdot\tilde{\boldsymbol{V}} + \frac{4\tilde{p}_n\tilde{v}_A^2}{9\tilde{\kappa}_\parallel}\right)d\tilde{s} + \tilde{p}_n\tilde{v}_A\sqrt{\frac{2}{9\tilde{\kappa}_\parallel}}dW(\tilde{s}), \text{if $\kappa_\parallel$ is independent of $p$}\\
  d\tilde{p}_n & = \left(-\frac{\tilde{p}_n}{3}\tilde{\nabla}\cdot\tilde{\boldsymbol{V}} + \frac{8\tilde{p}_n\tilde{v}_A^2}{27\tilde{\kappa}_\parallel}\right)d\tilde{s} + \tilde{p}_n\tilde{v}_A\sqrt{\frac{2}{9\tilde{\kappa}_\parallel}}dW(\tilde{s}), \text{if $\kappa_\parallel\sim p^{4/3}$}
\end{aligned}\end{split}\]

where \(\tilde{p}_n=\tilde{p}\tilde{p}_{n0}=p\tilde{p}_{n0}/p_0\),
where is \(\tilde{p}_{n0}\) is the numerical value for particles
with \(p_0\) in the code (e.g., 0.1 as often used),
\(\tilde{\nabla}=L_0\nabla\),
\(\tilde{\boldsymbol{V}}=\boldsymbol{V}/v_{A0}\),
\(\tilde{v}_A=\tilde{v}_{A0}\),
\(\tilde{\kappa}_\parallel=\kappa_\parallel/\kappa_0\),
\(\kappa_0=L_0v_{A0}\), \(\tilde{s}=s/t_0\), and
\(t_0=L_0/v_{A0}\). These are all given in the code.



Flow shear

For isotropic particle distributions, the flow shear introduces another
momentum diffusion term. If there is no average magnetic
field [Earl88].


\[\begin{split}\begin{aligned}
  D_{pp} & = \Gamma\tau p^2, \\
  \Gamma & = \frac{1}{30}\left(\frac{\partial U_i}{\partial x_j} +
  \frac{\partial U_j}{\partial x_i}\right)^2 -
  \frac{2}{45}\frac{\partial U_i}{\partial x_i}\frac{\partial U_j}{\partial x_j}
  = \frac{2}{15}\sum_{ij}\sigma_{ij}^2
\end{aligned}\end{split}\]

where \(\Gamma\) is the coefficient of viscous momentum transfer,
\(\sigma_{ij}=(\partial_iU_j + \partial_jU_i - 2\nabla\cdot\boldsymbol{U}\delta_{ij}/3)/2\)
is the shear tensor, \(\tau\) is the relaxation time for particle
scattering. According to [Webb18], \(\tau\)
is related particle diffusion coefficient \(\kappa_\parallel=v^2\tau/3\). The corresponding SDE is


\[\begin{aligned}
  dp = \left(-\frac{p}{3}\nabla\cdot\boldsymbol{v} +
  \frac{\Gamma}{p^2}\frac{\partial(p^4\tau)}{\partial p}\right)ds +
  \sqrt{2\Gamma\tau p^2}dW(s)
\end{aligned}\]

For \(\tau\sim\tau_0(p_0/p)^\alpha\),


\[\begin{aligned}
  dp = \left(-\frac{p}{3}\nabla\cdot\boldsymbol{v} + \frac{\Gamma\tau_0p_0^\alpha}{p^2}(4-\alpha)p^{3-\alpha}\right)ds +
  \sqrt{2\Gamma\tau_0 p_0^\alpha p^{2-\alpha}}dW(s)
\end{aligned}\]

which is normalized to


\[\begin{aligned}
  d\tilde{p}_n = \left(-\frac{\tilde{p}_n}{3}\tilde{\nabla}\cdot\tilde{\boldsymbol{v}} + (4-\alpha)\tilde{\Gamma}\tilde{\tau}_0\tilde{p}_n^{1-\alpha}\tilde{p}_{n0}^\alpha\right)d\tilde{s} + \sqrt{2\tilde{\Gamma}\tilde{\tau}_0\tilde{p}_n^{2-\alpha}\tilde{p}_{n0}^\alpha}dW(\tilde{s})
\end{aligned}\]

where \(\tilde{p}_n=\tilde{p}\tilde{p}_{n0}=p\tilde{p}_{n0}/p_0\),
where is \(\tilde{p}_{n0}\) is the numerical value for particles
with \(p_0\) in the code (e.g., 0.1 as often used),
\(\tilde{\nabla}=L_0\nabla\),
\(\tilde{\boldsymbol{v}}=\boldsymbol{v}/v_{A0}\),
\(\tilde{\Gamma}=\Gamma t_0^2\), \(\tilde{\tau}_0=\tau_0/t_0\),
\(\tilde{s}=s/t_0\), and \(t_0=L_0/v_{A0}\). For
\(\tau\sim\tau_0(p_0/p)^2\) [Earl88],


\[\begin{aligned}
  d\tilde{p}_n = \left(-\frac{\tilde{p}_n}{3}\tilde{\nabla}\cdot\tilde{\boldsymbol{v}} + \frac{2\tilde{\Gamma}\tilde{\tau}_0\tilde{p}_{n0}^2}{\tilde{p}_n}\right)d\tilde{s} + \sqrt{2\tilde{\Gamma}\tilde{\tau}_0\tilde{p}_{n0}^2}dW(\tilde{s})
\end{aligned}\]

For
\(\tau\sim\tau_0(p_0/p)^{2/3}\) [Giacalone99],


\[\begin{split}\begin{aligned}
  d\tilde{p}_n & = \left(-\frac{\tilde{p}_n}{3}\tilde{\nabla}\cdot\tilde{\boldsymbol{v}} + \frac{10}{3}\tilde{\Gamma}\tilde{\tau}_0\tilde{p}_{n}^{1/3}\tilde{p}_{n0}^{2/3}\right)d\tilde{s} + \sqrt{2\tilde{\Gamma}\tilde{\tau}_0\tilde{p}_n^{4/3}\tilde{p}_{n0}^{2/3}}dW(\tilde{s}) \\
  \tau_0 & = 3\kappa_{\parallel 0} / v_0^2
\end{aligned}\end{split}\]

If there is an average magnetic field, the equation is more complicated
(see [Williams91] [Williams93]).
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Spherical Coordinates

In spherical coordinates, the drift velocity


\[\begin{split}\begin{aligned}
  & \boldsymbol{V}_d = \frac{pcw}{3q}\nabla\times\left(\frac{\boldsymbol{B}}{B^2}\right)
  = \frac{1}{3q}\frac{p^2c^3}{\sqrt{p^2c^2+m^2c^4}}
  \left(\frac{1}{B^2}\nabla\times\boldsymbol{B} -
  \frac{2}{B^3}\nabla B\times\boldsymbol{B}\right) \\
  & (\nabla\times\boldsymbol{B})_r =
  \frac{1}{r\sin\theta}\frac{\partial}{\partial\theta}(\sin\theta B_\phi)
  - \frac{1}{r\sin\theta}\frac{\partial B_\theta}{\partial\phi} =
  \frac{1}{r}\frac{\partial B_\phi}{\partial\theta} +
  \frac{\cos\theta}{r\sin\theta}B_\phi
  - \frac{1}{r\sin\theta}\frac{\partial B_\theta}{\partial\phi} \\
  & (\nabla\times\boldsymbol{B})_\theta =
  \frac{1}{r\sin\theta}\frac{\partial B_r}{\partial\phi}
  - \frac{1}{r}\frac{\partial}{\partial r}(rB_\phi) =
  \frac{1}{r\sin\theta}\frac{\partial B_r}{\partial\phi}
  -\frac{\partial B_\phi}{\partial r} - \frac{B_\phi}{r} \\
  & (\nabla\times\boldsymbol{B})_\phi =
  \frac{1}{r}\frac{\partial}{\partial r}(rB_\theta)
  - \frac{1}{r}\frac{\partial B_r}{\partial\theta} =
  \frac{\partial B_\theta}{\partial r} + \frac{B_\theta}{r}
  - \frac{1}{r}\frac{\partial B_r}{\partial\theta} \\
  & (\nabla B)_r=\frac{\partial B}{\partial r};\quad
  (\nabla B)_\theta=\frac{1}{r}\frac{\partial B}{\partial\theta};\quad
  (\nabla B)_\phi=\frac{1}{r\sin\theta}\frac{\partial B}{\partial\phi} \\
  & (\nabla B\times\boldsymbol{B})_r = (\nabla B)_\theta B_\phi - (\nabla B)_\phi B_\theta \\
  & (\nabla B\times\boldsymbol{B})_\theta = (\nabla B)_\phi B_r - (\nabla B)_r B_\phi \\
  & (\nabla B\times\boldsymbol{B})_\phi = (\nabla B)_r B_\theta - (\nabla B)_\theta B_r
\end{aligned}\end{split}\]

The spatial diffusion coefficient is in the same form.


\[\begin{split}\begin{aligned}
  & \kappa =
  \begin{bmatrix}
    \kappa_{rr} & \kappa_{r\theta} & \kappa_{r\phi} \\
    \kappa_{r\theta} & \kappa_{\theta\theta} & \kappa_{\theta\phi} \\
    \kappa_{r\phi} & \kappa_{\theta\phi} & \kappa_{\phi\phi}
  \end{bmatrix}
  % & \kappa_{rr} = \kappa_\perp - \frac{\kappa_\perp-\kappa_\parallel}{B^2}B_r^2\\
  % & \kappa_{\theta\theta} = \kappa_\perp - \frac{\kappa_\perp-\kappa_\parallel}{B^2}B_\theta^2\\
  % & \kappa_{\phi\phi} = \kappa_\perp - \frac{\kappa_\perp-\kappa_\parallel}{B^2}B_\phi^2\\
  % & \kappa_{r\theta} = - \frac{\kappa_\perp-\kappa_\parallel}{B^2}B_rB_\theta\\
  % & \kappa_{r\phi} = - \frac{\kappa_\perp-\kappa_\parallel}{B^2}B_rB_\phi\\
  % & \kappa_{\theta\phi} = - \frac{\kappa_\perp-\kappa_\parallel}{B^2}B_\theta B_\phi
\end{aligned}\end{split}\]

where
\(\kappa_{ij}=\kappa_\perp\delta_{ij} - (\kappa_\perp - \kappa_\parallel)b_ib_j\),
and \(i,j\) are \(r,\theta,\phi\).

Since \(\kappa\) is of the same form as that in the Cartesian
coordinates, the gradients of \(\kappa\) are


\[\begin{split}\begin{aligned}
  \partial_r\kappa_{rr} & = \partial_r\kappa_\perp +
  \partial_r(\kappa_\parallel-\kappa_\perp)b_r^2 +
  2(\kappa_\parallel-\kappa_\perp)(B_rB\partial_rB_r - B_r^2\partial_r B)/B^3, \\
  \partial_\theta\kappa_{\theta\theta} & = \partial_\theta\kappa_\perp +
  \partial_\theta(\kappa_\parallel-\kappa_\perp)b_\theta^2 +
  2(\kappa_\parallel-\kappa_\perp)(B_\theta B\partial_\theta B_\theta - B_\theta^2\partial_\theta B)/B^3, \\
  \partial_\phi\kappa_{\phi\phi} & = \partial_\phi\kappa_\perp +
  \partial_\phi(\kappa_\parallel-\kappa_\perp)b_\phi^2 +
  2(\kappa_\parallel-\kappa_\perp)(B_\phi B\partial_\phi B_\phi - B_\phi^2\partial_\phi B)/B^3, \\
  \partial_r\kappa_{r\theta} & = \partial_r(\kappa_\parallel-\kappa_\perp)b_rb_\theta +
  (\kappa_\parallel-\kappa_\perp)[(B_\theta\partial_rB_r + B_r\partial_rB_\theta)B -
  2B_rB_\theta\partial_rB] / B^3, \\
  \partial_\theta\kappa_{r\theta} & = \partial_\theta(\kappa_\parallel-\kappa_\perp)b_rb_\theta +
  (\kappa_\parallel-\kappa_\perp)[(B_\theta\partial_\theta B_r + B_r\partial_\theta B_\theta)B -
  2B_rB_\theta\partial_\theta B] / B^3, \\
  \partial_r\kappa_{r\phi} & = \partial_r(\kappa_\parallel-\kappa_\perp)b_rb_\phi +
  (\kappa_\parallel-\kappa_\perp)[(B_\phi\partial_rB_r + B_r\partial_rB_\phi)B -
  2B_rB_\phi\partial_rB] / B^3, \\
  \partial_\phi\kappa_{r\phi} & = \partial_\phi(\kappa_\parallel-\kappa_\perp)b_rb_\phi +
  (\kappa_\parallel-\kappa_\perp)[(B_\phi\partial_\phi B_r + B_r\partial_\phi B_\phi)B -
  2B_rB_\phi\partial_\phi B] / B^3, \\
  \partial_\theta\kappa_{\theta\phi} & = \partial_\theta(\kappa_\parallel-\kappa_\perp)b_\theta b_\phi +
  (\kappa_\parallel-\kappa_\perp)[(B_\phi\partial_\theta B_\theta + B_\theta\partial_\theta B_\phi)B -
  2B_\theta B_\phi\partial_\theta B] / B^3, \\
  \partial_\phi\kappa_{\theta\phi} & = \partial_\phi(\kappa_\parallel-\kappa_\perp)b_\theta b_\phi +
  (\kappa_\parallel-\kappa_\perp)[(B_\phi\partial_\phi B_\theta + B_\theta\partial_\phi B_\phi)B -
  2B_\theta B_\phi\partial_\phi B] / B^3.
\end{aligned}\end{split}\]

We then need to transfer the Parker transport equation to the spherical
coordinates. Since we don’t have cross-diffusion terms (spatial and
momentum), we can ignore the momentum diffusion for now.


Note

For a more complete equation, the cross-diffusion terms should be included.




\[\begin{aligned}
  \frac{\partial F}{\partial t}
  & = -(\boldsymbol{V}+\boldsymbol{V}_d)\cdot\nabla F
  - (\nabla\cdot\boldsymbol{V})F
  + \frac{\partial}{\partial p}\left[\frac{p}{3}(\nabla\cdot\boldsymbol{V})F\right]
  + \nabla\cdot(\boldsymbol{\kappa}\cdot\nabla F)
\end{aligned}\]

where \(F=fp^2\). Since \(\nabla\cdot\boldsymbol{V}_d=0\), we
can add one more term \(-(\nabla\cdot\boldsymbol{V}_d)F\) to the
right. Then,


\[\begin{aligned}
  \frac{\partial F}{\partial t}
  & = -\nabla\cdot((\boldsymbol{V}+\boldsymbol{V}_d)F)
  + \frac{\partial}{\partial p}\left[\frac{p}{3}(\nabla\cdot\boldsymbol{V})F\right]
  + \nabla\cdot(\boldsymbol{\kappa}\cdot\nabla F)
\end{aligned}\]

Taking \(\boldsymbol{V}+\boldsymbol{V}_d\rightarrow\boldsymbol{V}\),


\[\begin{split}\begin{aligned}
  \nabla\cdot(\boldsymbol{V}F) & =
  \frac{1}{r^2}\frac{\partial}{\partial r}(r^2V_rF)
  +\frac{1}{r\sin\theta}\frac{\partial}{\partial\theta}(\sin\theta V_\theta F)
  +\frac{1}{r\sin\theta}\frac{\partial}{\partial\phi}(V_\phi F) \\
  & = \frac{\partial(V_rF)}{\partial r} + \frac{2}{r}V_rF
  +\frac{\partial}{\partial\theta}\left(\frac{V_\theta F}{r}\right)
  +\frac{\cos\theta}{r\sin\theta}V_\theta F
  +\frac{\partial}{\partial\phi}\left(\frac{V_\phi F}{r\sin\theta}\right)
\end{aligned}\end{split}\]

so there is 2 additional terms (2nd and 4th) if we want to write the
equation Fokker–Planck form. It turns out that we need to change
\(F\) to
\(F_1=F\sin\theta r^2\) [Jokipii77] [Pei10].
Multiplying the above equation by \(r^2\sin\theta\), we get


\[\begin{aligned}
  r^2\sin\theta\nabla\cdot(\boldsymbol{V}F) & =
  \frac{\partial(V_rF_1)}{\partial r}
  +\frac{\partial}{\partial\theta}\left(\frac{V_\theta F_1}{r}\right)
  +\frac{\partial}{\partial\phi}\left(\frac{V_\phi F_1}{r\sin\theta}\right)
\end{aligned}\]

For the diffusion term,


\[\begin{split}\begin{aligned}
  \boldsymbol{\kappa}\cdot\nabla F = &
  \left(\kappa_{rr}\frac{\partial F}{\partial r} +
  \kappa_{r\theta}\frac{1}{r}\frac{\partial F}{\partial\theta} +
  \kappa_{r\phi}\frac{1}{r\sin\theta}\frac{\partial F}{\partial\phi}
  \right)\hat{e}_r + \\\nonumber
  & \left(\kappa_{r\theta}\frac{\partial F}{\partial r} +
  \kappa_{\theta\theta}\frac{1}{r}\frac{\partial F}{\partial\theta} +
  \kappa_{\theta\phi}\frac{1}{r\sin\theta}\frac{\partial F}{\partial\phi}
  \right)\hat{e}_\theta + \\\nonumber
  & \left(\kappa_{r\phi}\frac{\partial F}{\partial r} +
  \kappa_{\theta\phi}\frac{1}{r}\frac{\partial F}{\partial\theta} +
  \kappa_{\phi\phi}\frac{1}{r\sin\theta}\frac{\partial F}{\partial\phi}
  \right)\hat{e}_\phi
\end{aligned}\end{split}\]

Taking \(\boldsymbol{A}=\boldsymbol{\kappa}\cdot\nabla F\),


\[\begin{aligned}
  r^2\sin\theta\nabla\cdot\boldsymbol{A} =
  \frac{\partial(r^2\sin\theta A_r)}{\partial r} +
  \frac{\partial(r\sin\theta A_\theta)}{\partial\theta} +
  \frac{\partial(rA_\phi)}{\partial\phi}
\end{aligned}\]

The 1st term on the right is expanded to


\[\begin{split}\begin{aligned}
  & \frac{\partial^2}{\partial r^2}(\kappa_{rr}F_1) +
  \frac{\partial^2}{\partial r\partial\theta}\left(\frac{\kappa_{r\theta}}{r}F_1\right) +
  \frac{\partial^2}{\partial r\partial\phi}\left(\frac{\kappa_{r\phi}}{r\sin\theta}F_1\right) \\
  \nonumber
  & -\frac{\partial}{\partial r}\left[\left(\frac{1}{r^2}
    \frac{\partial(r^2\kappa_{rr})}{\partial r} +
  \frac{1}{r}\frac{\partial\kappa_{r\theta}}{\partial\theta}+
  \frac{\cos\theta}{r\sin\theta}\kappa_{r\theta}+
  \frac{1}{r\sin\theta}\frac{\partial\kappa_{r\phi}}{\partial\phi}\right)F_1\right]
\end{aligned}\end{split}\]

The 2nd term one the right is expanded to


\[\begin{split}\begin{aligned}
  & \frac{\partial^2}{\partial r\partial\theta}\left(\frac{\kappa_{r\theta}}{r}F_1\right) +
  \frac{\partial^2}{\partial\theta^2}\left(\frac{\kappa_{\theta\theta}}{r^2}F_1\right) +
  \frac{\partial^2}{\partial\theta\partial\phi}\left(\frac{\kappa_{\theta\phi}}{r^2\sin\theta}F_1\right) \\
  \nonumber
  & -\frac{\partial}{\partial\theta}\left[\left(\frac{1}{r^2}
    \frac{\partial(r\kappa_{r\theta})}{\partial r}+
  \frac{1}{r^2\sin\theta}\frac{\partial(\sin\theta\kappa_{\theta\theta})}{\partial\theta}+
  \frac{1}{r^2\sin\theta}\frac{\partial\kappa_{\theta\phi}}{\partial\phi}\right)F_1\right]
\end{aligned}\end{split}\]

The 3rd term one the right is expanded to


\[\begin{split}\begin{aligned}
  & \frac{\partial^2}{\partial r\partial\phi}\left(\frac{\kappa_{r\phi}}{r\sin\theta}F_1\right) +
  \frac{\partial^2}{\partial\theta\partial\phi}\left(\frac{\kappa_{\theta\phi}}{r^2\sin\theta}F_1\right) +
  \frac{\partial^2}{\partial\phi^2}\left(\frac{\kappa_{\phi\phi}}{r^2\sin^2\theta}F_1\right) \\
  \nonumber
  & -\frac{\partial}{\partial\phi}\left[\left(\frac{1}{r^2\sin\theta}
    \frac{\partial(r\kappa_{r\phi})}{\partial r}+
  \frac{1}{r^2\sin\theta}\frac{\partial(\kappa_{\theta\phi})}{\partial\theta}+
  \frac{1}{r^2\sin^2\theta}\frac{\partial\kappa_{\phi\phi}}{\partial\phi}\right)F_1\right]
\end{aligned}\end{split}\]

The final transferred version of Parker transport equation is


\[\begin{split}\begin{aligned}
  \frac{\partial F_1}{\partial t} = &
  -\frac{\partial}{\partial r}\left[\left(v_r+v_{dr}
    +\frac{1}{r^2}\frac{\partial(r^2\kappa_{rr})}{\partial r} +
  \frac{1}{r}\frac{\partial\kappa_{r\theta}}{\partial\theta}+
  \frac{\cos\theta}{r\sin\theta}\kappa_{r\theta}+
  \frac{1}{r\sin\theta}\frac{\partial\kappa_{r\phi}}{\partial\phi}
  \right)F_1\right] \\\nonumber
  & -\frac{\partial}{\partial\theta}\left[\left(\frac{v_\theta+v_{d\theta}}{r}
    +\frac{1}{r^2}\frac{\partial(r\kappa_{r\theta})}{\partial r}+
  \frac{1}{r^2\sin\theta}\frac{\partial(\sin\theta\kappa_{\theta\theta})}{\partial\theta}+
  \frac{1}{r^2\sin\theta}\frac{\partial\kappa_{\theta\phi}}{\partial\phi}
  \right)F_1\right]\\\nonumber
  & -\frac{\partial}{\partial\phi}\left[\left(\frac{v_\phi+v_{d\phi}}{r\sin\theta}
    +\frac{1}{r^2\sin\theta}\frac{\partial(r\kappa_{r\phi})}{\partial r}+
  \frac{1}{r^2\sin\theta}\frac{\partial(\kappa_{\theta\phi})}{\partial\theta}+
  \frac{1}{r^2\sin^2\theta}\frac{\partial\kappa_{\phi\phi}}{\partial\phi}
  \right)F_1\right]\\\nonumber
  & +\frac{\partial}{\partial p}\left(\frac{p}{3}
  \left(\frac{1}{r^2}\frac{\partial(r^2v_r)}{\partial r} +
  \frac{1}{r\sin\theta}\frac{\partial(\sin\theta v_\theta)}{\partial\theta} +
  \frac{1}{r\sin\theta}\frac{\partial v_\phi}{\partial\phi}\right)F_1\right)\\\nonumber
  & +\frac{\partial^2}{\partial r^2}(\kappa_{rr}F_1) +
  \frac{\partial^2}{\partial r\partial\theta}\left(\frac{\kappa_{r\theta}}{r}F_1\right) +
  \frac{\partial^2}{\partial r\partial\phi}\left(\frac{\kappa_{r\phi}}{r\sin\theta}F_1\right)\\\nonumber
  & +\frac{\partial^2}{\partial r\partial\theta}\left(\frac{\kappa_{r\theta}}{r}F_1\right) +
  \frac{\partial^2}{\partial\theta^2}\left(\frac{\kappa_{\theta\theta}}{r^2}F_1\right) +
  \frac{\partial^2}{\partial\theta\partial\phi}\left(\frac{\kappa_{\theta\phi}}{r^2\sin\theta}F_1\right)\\\nonumber
  & +\frac{\partial^2}{\partial r\partial\phi}\left(\frac{\kappa_{r\phi}}{r\sin\theta}F_1\right) +
  \frac{\partial^2}{\partial\theta\partial\phi}\left(\frac{\kappa_{\theta\phi}}{r^2\sin\theta}F_1\right) +
  \frac{\partial^2}{\partial\phi^2}\left(\frac{\kappa_{\phi\phi}}{r^2\sin^2\theta}F_1\right)\nonumber
\end{aligned}\end{split}\]

This corresponds to a set of SDEs.


\[\begin{split}\begin{aligned}
  dr & = \left(v_r+v_{dr} +
  \frac{\partial\kappa_{rr}}{\partial r} + \frac{2}{r}\kappa_{rr}+
  \frac{1}{r}\frac{\partial\kappa_{r\theta}}{\partial\theta}+
  \frac{\cos\theta}{r\sin\theta}\kappa_{r\theta}+
  \frac{1}{r\sin\theta}\frac{\partial\kappa_{r\phi}}{\partial\phi}
  \right)dt + [P.dW_t]_r \\
  d\theta & = \left(\frac{v_\theta+v_{d\theta}}{r} +
  \frac{1}{r}\frac{\partial\kappa_{r\theta}}{\partial r} + \frac{\kappa_{r\theta}}{r^2}+
  \frac{1}{r^2}\frac{\partial\kappa_{\theta\theta}}{\partial\theta}+
  \frac{\cos\theta}{r^2\sin\theta}\kappa_{\theta\theta}+
  \frac{1}{r^2\sin\theta}\frac{\partial\kappa_{\theta\phi}}{\partial\phi}
  \right)dt + [P.dW_t]_\theta \\
  d\phi & = \left(\frac{v_\phi+v_{d\phi}}{r\sin\theta}+
  \frac{1}{r\sin\theta}\frac{\partial\kappa_{r\phi}}{\partial r} +
  \frac{\kappa_{r\phi}}{r^2\sin\theta} +
  \frac{1}{r^2\sin\theta}\frac{\partial\kappa_{\theta\phi}}{\partial\theta}+
  \frac{1}{r^2\sin^2\theta}\frac{\partial\kappa_{\phi\phi}}{\partial\phi}
  \right)dt + [P.dW_t]_\phi\\
  dp & = -\frac{p}{3}\left(\frac{\partial v_r}{\partial r}+\frac{2v_r}{r}+
  \frac{1}{r}\frac{\partial v_\theta}{\partial\theta} +
  \frac{\cos\theta}{r\sin\theta}v_\theta +
  \frac{1}{r\sin\theta}\frac{\partial v_\phi}{\partial\phi}\right)
\end{aligned}\end{split}\]

where


\[\begin{split}\begin{aligned}
  & PP^T =
  \begin{bmatrix}
    2\kappa_{rr} & \dfrac{2\kappa_{r\theta}}{r} & \dfrac{2\kappa_{r\phi}}{r\sin\theta} \\
    \dfrac{2\kappa_{r\theta}}{r} & \dfrac{2\kappa_{\theta\theta}}{r^2} &
    \dfrac{2\kappa_{\theta\phi}}{r^2\sin\theta} \\
    \dfrac{2\kappa_{r\phi}}{r\sin\theta} & \dfrac{2\kappa_{\theta\phi}}{r^2\sin\theta} &
    \dfrac{2\kappa_{\phi\phi}}{r^2\sin^2\theta}
  \end{bmatrix}
\end{aligned}\end{split}\]

According to [Pei10], one possibility for
\(P\) is


\[\begin{split}\begin{aligned}
  \begin{bmatrix}
    \sqrt{\dfrac{\kappa_{rr}\kappa_{\theta\phi}^2+\kappa_{\theta\theta}\kappa_{r\phi}^2
      +\kappa_{\phi\phi}\kappa_{r\theta}^2-2\kappa_{r\phi}\kappa_{r\theta}\kappa_{\theta\phi}
    -\kappa_{rr}\kappa_{\theta\theta}\kappa_{\phi\phi}}
    {0.5(\kappa_{\theta\phi}^2 - \kappa_{\theta\theta}\kappa_{\phi\phi})}}
    & \dfrac{\kappa_{r\phi}\kappa_{\theta\phi}-\kappa_{r\theta}\kappa_{\phi\phi}}
    {\kappa_{\theta\phi}^2 - \kappa_{\theta\theta}\kappa_{\phi\phi}}
    \sqrt{2\kappa_{\theta\theta}-\dfrac{2\kappa_{\theta\phi}^2}{\kappa_{\phi\phi}}}
    & \dfrac{\sqrt{2}\kappa_{r\phi}}{\sqrt{\kappa_{\phi\phi}}} \\
    0 &
    \dfrac{\sqrt{2\left(\kappa_{\theta\theta}-\kappa_{\theta\phi}^2/\kappa_{\phi\phi}\right)}}{r}
    &
    \dfrac{\kappa_{\theta\phi}}{r}\sqrt{\dfrac{2}{\kappa_{\phi\phi}}} \\
    0 & 0 &
    \dfrac{\sqrt{2\kappa_{\phi\phi}}}{r\sin\theta}
  \end{bmatrix}
\end{aligned}\end{split}\]

For 1D probelms, \(F_1=fp^2r^2\), and the corresponding SDEs are


\[\begin{split}\begin{aligned}
  dr & = \left(v_r + \frac{\partial\kappa_{rr}}{\partial r} +
  \frac{2}{r}\kappa_{rr}\right)dt + \sqrt{2\kappa_{rr}}dW_t \\
  dp & = -\frac{p}{3}\left(\frac{\partial v_r}{\partial r}+\frac{2v_r}{r}\right)
\end{aligned}\end{split}\]

For 2D problems, \(F_1=fp^2r^2\sin\theta\), and the corresponding
SDEs are


\[\begin{split}\begin{aligned}
  dr & = \left(v_r +
  \frac{\partial\kappa_{rr}}{\partial r} + \frac{2}{r}\kappa_{rr}+
  \frac{1}{r}\frac{\partial\kappa_{r\theta}}{\partial\theta}+
  \frac{\cos\theta}{r\sin\theta}\kappa_{r\theta}
  \right)dt + [P.dW_t]_r \\
  d\theta & = \left(\frac{v_\theta}{r} +
  \frac{1}{r}\frac{\partial\kappa_{r\theta}}{\partial r} + \frac{\kappa_{r\theta}}{r^2}+
  \frac{1}{r^2}\frac{\partial\kappa_{\theta\theta}}{\partial\theta}+
  \frac{\cos\theta}{r^2\sin\theta}\kappa_{\theta\theta}
  \right)dt + [P.dW_t]_\theta \\
  dp & = -\frac{p}{3}\left(\frac{\partial v_r}{\partial r}+\frac{2v_r}{r}+
  \frac{1}{r}\frac{\partial v_\theta}{\partial\theta} +
  \frac{\cos\theta}{r\sin\theta}v_\theta\right)
\end{aligned}\end{split}\]

where


\[\begin{split}\begin{aligned}
  & PP^T =
  \begin{bmatrix}
    2\kappa_{rr} & \dfrac{2\kappa_{r\theta}}{r} \\
    \dfrac{2\kappa_{r\theta}}{r} & \dfrac{2\kappa_{\theta\theta}}{r^2}
  \end{bmatrix}
\end{aligned}\end{split}\]

One possibility for \(P\) is


\[\begin{split}\begin{aligned}
  & \begin{bmatrix}
    -\dfrac{Q_{--}\sqrt{-Q_{-+}}}{\sqrt{Q_{--}^2+4b^2}} &
    \dfrac{Q_{+-}\sqrt{Q_{++}}}{\sqrt{Q_{+-}^2+4b^2}} \\
    \dfrac{2b\sqrt{-Q_{-+}}}{\sqrt{Q_{--}^2+4b^2}} &
    \dfrac{2b\sqrt{Q_{++}}}{\sqrt{Q_{+-}^2+4b^2}}
  \end{bmatrix}
\end{aligned}\end{split}\]

where


\[\begin{split}\begin{aligned}
  Q_{++} &=\sqrt{(a-c)^2+4b^2} + (a + c) \\
  Q_{-+} &=\sqrt{(a-c)^2+4b^2} - (a + c) \\
  Q_{+-} &=\sqrt{(a-c)^2+4b^2} + (a - c) \\
  Q_{--} &=\sqrt{(a-c)^2+4b^2} - (a - c)
\end{aligned}\end{split}\]

where \(a=\kappa_{rr}\), \(b=\kappa_{r\theta}/r\),
\(c=\kappa_{\theta\theta}/r^2\).



[Jokipii77]
Jokipii, J.R. and Levy, E.H., 1977. Effects of particle drifts on the solar modulation of galactic cosmic rays. The Astrophysical Journal, 213, pp.L85-L88.
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The Equation Solved


Warning

This part is still in early development. Please use it with caution.




Note

It is better to read the section on Parker’s transport equation first since some of the details are skipped here.



The focused transport equation is [Zank14]


\[\begin{split}\begin{aligned}
  & \frac{\partial f}{\partial t} + (U_i + c\mu b_i)\frac{\partial f}{\partial x_i} + \frac{dc}{dt}\frac{\partial f}{\partial c} + \frac{d\mu}{dt}\frac{\partial f}{\partial\mu} = \left<\left.\frac{\delta f}{\delta t}\right\vert_s\right> \\
  & \frac{dc}{dt} = \left[\frac{1-3\mu^2}{2}b_ib_j\frac{\partial U_i}{\partial x_j}-\frac{1-\mu^2}{2}\nabla\cdot\boldsymbol{U}-\frac{\mu b_i}{c}\left(\frac{\partial U_i}{\partial t} + U_j\frac{\partial U_i}{\partial x_j}\right)\right]c \\
  & \frac{d\mu}{dt} = \frac{1-\mu^2}{2}\left[c\nabla\cdot\boldsymbol{b}+\mu\nabla\cdot\boldsymbol{U} - 3\mu b_ib_j\frac{\partial U_i}{\partial x_j}-\frac{2b_i}{c}\left(\frac{\partial U_i}{\partial t} + U_j\frac{\partial U_i}{\partial x_j}\right)\right]
\end{aligned}\end{split}\]

where \(\boldsymbol{c}\) is the particle velocity in the flow frame
(\(\boldsymbol{v}=\boldsymbol{c} + \boldsymbol{U}\)),
\(\mu\equiv\cos\theta=\boldsymbol{c}\cdot\boldsymbol{b}/c\) is the
particle pitch angle, \(\boldsymbol{b}\equiv\boldsymbol{B}/B\) is
the unit vector along the magnetic field. The following focused
transport equation is often
used [Zhang09] [Zuo13] [Zhang17] [Kong22],


(1)\[\begin{aligned}
  \frac{\partial f}{\partial t} = \nabla\cdot(\boldsymbol{\kappa}_\perp\nabla f) - (v\mu\boldsymbol{b} + \boldsymbol{V} + \boldsymbol{V}_d)\cdot\nabla f + \frac{\partial}{\partial\mu}\left(D_{\mu\mu}\frac{\partial f}{\partial\mu}\right) - \frac{d\mu}{dt}\frac{\partial f}{\partial\mu} - \frac{dp}{dt}\frac{\partial f}{\partial p}
\end{aligned}\]

where the terms on the right-hand side are cross-field spatial diffusion
with a tensor
\(\boldsymbol{\kappa}_\perp=\kappa_\perp\left(\overline{\overline{\mathbf{I}}}-\boldsymbol{b}\boldsymbol{b}\right)\) [Zhang09],
streaming along the ambient or average magnetic field direction
\(\boldsymbol{b}\) with particle speed \(v\) and pitch-angle
cosine \(\mu\), convection with the background plasma
\(\boldsymbol{V}\), partial gradient/curvature drift
\(\boldsymbol{V}_d\), pitch-angle diffusion with a coefficient
\(D_{\mu\mu}\), focusing \(d\mu/dt\), and adiabatic
heating/cooling \(dp/dt\). In the adiabatic approximation, the drift
velocity, focusing rate, and cooling rate may be calculated from the
ambient magnetic field \(\boldsymbol{B}=B\boldsymbol{b}\) and plasma
velocity \(\boldsymbol{V}\) through


\[\begin{split}\begin{aligned}
  & \boldsymbol{V}_d=\frac{cpv}{qB}\left\{\frac{1-\mu^2}{2}\frac{\boldsymbol{B}\times\nabla B}{B^2}+\mu^2\frac{\boldsymbol{B}\times[(\boldsymbol{B}\cdot\nabla)\boldsymbol{B}]}{B^3}+\frac{1-\mu^2}{2}\frac{\boldsymbol{B}(\boldsymbol{B}\cdot\nabla\times\boldsymbol{B})}{B^3}\right\}\\
  & \frac{d\mu}{dt} = \frac{1-\mu^2}{2}\left[-v\boldsymbol{b}\cdot\nabla\ln B+\mu\nabla\cdot\boldsymbol{V} - 3\mu b_ib_j\frac{\partial V_i}{\partial x_j}-\frac{2b_i}{v}\frac{dV_i}{dt}\right] \\
  & \frac{dp}{dt} = -p\left[\frac{1-\mu^2}{2}\left(\nabla\cdot\boldsymbol{V}-b_ib_j\frac{\partial V_i}{\partial x_j}\right)+\mu^2b_ib_j\frac{\partial V_i}{\partial x_j}+\frac{\mu b_i}{v}\frac{dV_i}{dt}\right]
\end{aligned}\end{split}\]

where \(\boldsymbol{V}_d\) includes gradient, curvature, and
parallel drifts. We may ignore \(\partial V_i/\partial t\) in
\(dV_i/dt\) if the flow is not dramatically evolving.

In the quasi-linear theory, resonant interaction between the particle
and the turbulent magnetic field can be related by the pitch-angle
diffusion coefficient
\(D_{\mu\mu}\) [Jokipii77] [Kong22]


\[D_{\mu\mu} = \frac{\pi}{4}\Omega_0(1-\mu^2)\frac{k_\text{res}P(k_\text{res})}{B_0^2}\]

where \(\Omega_0\) is particle gyrofrequency,
\(k_\text{res}=|\Omega_0/v\mu|\) is the resonant wavenumber. The
above equation is strictly applicable only for the case of 1D turbulence
in which the wavevectors are aligned with the mean field. For
anisotropic turbulence (e.g., 2D + slab), only the slab turbulence
(about 20% of all turbulent
fluctuations [Bieber96]) affect particle
parallel transport [Florinski03]. The
turbulence power is usually expressed as


\[P(k) = \frac{\left<\delta B^2\right>}{1+(kL_c)^\gamma}\left[\int_{k_\text{min}}^{k_\text{max}}\frac{dk}{1+(kL_c)^\gamma}\right]^{-1}\]

where \(k_\text{min}\) and \(k_\text{max}\) are the smallest and
largest wavenumbers in the system, \(L_c\) is the turbulence
correlation length, and \(\gamma\) is the turbulence spectrum index
(e.g., 5/3). For \(k_\text{min}\ll 1/L_c \ll k_\text{max}\), the
integral in the above equation can be taken from 0 to \(\infty\).
From the table of integral,
\(\int_0^\infty x^{\mu-1} dx / (1+x^\nu) = \pi\csc(\mu\pi/\nu)/\nu\).
Then,


\[P(k) = \frac{\left<\delta B^2\right>L_c}{1+(kL_c)^\gamma}A_0\]

where \(A_0=\left[(\pi/\gamma)\csc(\pi/\gamma)\right]^{-1}\). In the
nonrelativistic limit, we take the pitch-angle diffusion coefficient in
the form of [Kong22]


\[\begin{aligned}
  D_{\mu\mu}=D_{\mu\mu0}\left(\frac{p}{p_0}\right)^{\gamma-1}(1-\mu^2)(|\mu|^{\gamma-1} + h_0)
\end{aligned}\]

where
\(D_{\mu\mu0}=\frac{\pi}{4}A_0\sigma^2\Omega_0^{2-\gamma}L_c^{1-\gamma}v_0^{\gamma-1}\),
and \(p_0\)(\(v_0\)) is the initial particle momentum
(velocity) at the injection energy. The parameter \(h_0\) is added
to describe the scattering through \(\mu=0\), and we set
\(h_0=0.2\) [Zhang17] [Kong22].


\[\begin{aligned}
  \frac{\partial D_{\mu\mu}}{\partial\mu} = D_{\mu\mu0}\left(\frac{p}{p_0}\right)^{\gamma-1}\left[-2\mu(|\mu|^{\gamma-1} + h_0) + (1-\mu^2)\text{sign}(\mu)|\mu|^{\gamma-2}\right]
\end{aligned}\]



[Kong22]
(1,2,3,4)
Kong, X., Chen, B., Guo, F., Shen, C., Li, X., Ye, J., Zhao, L., Jiang, Z., Yu, S., Chen, Y. and Giacalone, J., 2022. Numerical modeling of energetic electron acceleration, transport, and emission in solar flares: connecting loop-top and footpoint hard X-ray sources. The Astrophysical Journal Letters, 941(2), p.L22.




[Zank14]
Zank, G.P., 2014. Transport processes in space physics and astrophysics (Vol. 877, p. 185). Berlin: Springer.




[Zhang09]
(1,2)
Zhang, M., Qin, G. and Rassoul, H., 2009. Propagation of solar energetic particles in three-dimensional interplanetary magnetic fields. The Astrophysical Journal, 692(1), p.109.




[Zhang17]
(1,2)
Zhang, M. and Zhao, L., 2017. Precipitation and release of solar energetic particles from the solar coronal magnetic field. The Astrophysical Journal, 846(2), p.107.




[Zuo13]
Zuo, P., Zhang, M. and Rassoul, H.K., 2013. The role of cross-shock potential on pickup ion shock acceleration in the framework of focused transport theory. The Astrophysical Journal, 776(2), p.93.






Footnotes



            

          

      

      

    

  

    
      
          
            
  
Cartesian Coordinates

The Fokker-Planck form of the focused transport equation is


\[\begin{split}\begin{aligned}
  \frac{\partial F}{\partial t} = & \nabla\cdot\left[\nabla\cdot(\boldsymbol{\kappa}_\perp\nabla F)\right] - \nabla\cdot\left[(v\mu\boldsymbol{b} + \boldsymbol{V} + \boldsymbol{V}_d + \nabla\cdot\boldsymbol{\kappa}_\perp)F\right] \nonumber\\
  & + \frac{\partial}{\partial\mu^2}\left(D_{\mu\mu}F\right) - \frac{\partial}{\partial\mu}\left[\left(\frac{d\mu}{dt}+\frac{\partial D_{\mu\mu}}{\partial\mu}\right)F\right] - \frac{\partial}{\partial p}\left(\frac{dp}{dt}F\right)
\end{aligned}\end{split}\]

where \(F=fp^2\). The corresponding SDEs are


\[\begin{split}\begin{aligned}
  d\boldsymbol{X} & = (v\mu\boldsymbol{b} + \boldsymbol{V} + \boldsymbol{V}_d + \nabla\cdot\boldsymbol{\kappa}_\perp)dt + \sum_\sigma\boldsymbol{\alpha}_\sigma dW_\sigma(s) \\
  dp & = \left(\frac{dp}{dt}\right)dt \\
  d\mu & = \left(\frac{d\mu}{dt}+\frac{\partial D_{\mu\mu}}{\partial\mu}\right)dt + \sqrt{2D_{\mu\mu}}dW_\mu(t)
\end{aligned}\end{split}\]

where
\(\sum_\sigma\alpha_\sigma^\mu\alpha_\sigma^\nu = 2\kappa_\perp^{\mu\nu}\).
We can use the results from the 3D model with whole spatial
diffusion tensor \(\boldsymbol{\kappa}\) but set
\(\kappa_\parallel=0\). The matrix


\[\begin{split}P =
  \begin{pmatrix}
    0 & -b_xb_z\sqrt{2\kappa_\perp}/\sqrt{b_x^2+b_y^2} &
    -b_y\sqrt{2\kappa_\perp}/\sqrt{b_x^2+b_y^2}\\
    0 & -b_yb_z\sqrt{2\kappa_\perp}/\sqrt{b_x^2+b_y^2} &
    b_x\sqrt{2\kappa_\perp}/\sqrt{b_x^2+b_y^2}\\
    0 & \sqrt{b_x^2+b_y^2}\sqrt{2\kappa_\perp}         & 0
  \end{pmatrix}\end{split}\]

Since the first column is all zeros, we only need two Weiner processes
to describe the spatial diffusion. For 2D problems,


\[\begin{split}P = \frac{\sqrt{2\kappa_\perp}}{\sqrt{b_x^2+b_y^2}}
  \begin{pmatrix}
    -b_xb_z &
    -b_y\\
    -b_yb_z &
    b_x
  \end{pmatrix}\end{split}\]

To calculate the drift velocity


\[\begin{aligned}
  & \boldsymbol{V}_d=\frac{cpv}{qB}\left\{\frac{1-\mu^2}{2}\frac{\boldsymbol{B}\times\nabla B}{B^2}+\mu^2\frac{\boldsymbol{B}\times[(\boldsymbol{B}\cdot\nabla)\boldsymbol{B}]}{B^3}+\frac{1-\mu^2}{2}\frac{\boldsymbol{B}(\boldsymbol{B}\cdot\nabla\times\boldsymbol{B})}{B^3}\right\},
\end{aligned}\]

we need


\[\begin{split}\begin{aligned}
  (\boldsymbol{B}\times\nabla B)_x & = B_y\partial_z B - B_z\partial_y B \\
  (\boldsymbol{B}\times\nabla B)_y & = B_z\partial_x B - B_x\partial_z B \\
  (\boldsymbol{B}\times\nabla B)_z & = B_x\partial_y B - B_y\partial_x B \\
  \{\boldsymbol{B}\times[(\boldsymbol{B}\cdot\nabla)\boldsymbol{B}]\}_x & = B_y(\boldsymbol{B}\cdot\nabla)B_z - B_z(\boldsymbol{B}\cdot\nabla)B_y \\
  \{\boldsymbol{B}\times[(\boldsymbol{B}\cdot\nabla)\boldsymbol{B}]\}_y & = B_z(\boldsymbol{B}\cdot\nabla)B_x - B_x(\boldsymbol{B}\cdot\nabla)B_z \\
  \{\boldsymbol{B}\times[(\boldsymbol{B}\cdot\nabla)\boldsymbol{B}]\}_z & = B_x(\boldsymbol{B}\cdot\nabla)B_y - B_y(\boldsymbol{B}\cdot\nabla)B_x \\
  \boldsymbol{B}\cdot\nabla & = B_x\partial_x + B_y\partial_y + B_z\partial_z \\
  \boldsymbol{B}\cdot\nabla\times\boldsymbol{B} & = B_x (\partial_y B_z - \partial_z B_y) + \nonumber \\
  & B_y (\partial_z B_x - \partial_x B_z) + B_z (\partial_x B_y - \partial_y B_x)
\end{aligned}\end{split}\]

For 2D problems, these can be simplified using


\[\begin{split}\begin{aligned}
  (\boldsymbol{B}\times\nabla B)_x & = - B_z\partial_y B \\
  (\boldsymbol{B}\times\nabla B)_y & = B_z\partial_x B \\
  (\boldsymbol{B}\times\nabla B)_z & = B_x\partial_y B - B_y\partial_x B \\
  \boldsymbol{B}\cdot\nabla & = B_x\partial_x + B_y\partial_y \\
  \boldsymbol{B}\cdot\nabla\times\boldsymbol{B} & = B_x\partial_y B_z - B_y\partial_x B_z + B_z (\partial_x B_y - \partial_y B_x)
\end{aligned}\end{split}\]
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Spherical Coordinates

The spatial diffusion coefficient is in the same form.


\[\begin{split}\begin{aligned}
  & \boldsymbol{\kappa}_\perp =
  \begin{bmatrix}
    \kappa_{\perp rr} & \kappa_{\perp r\theta} & \kappa_{\perp r\phi} \\
    \kappa_{\perp r\theta} & \kappa_{\perp\theta\theta} & \kappa_{\perp\theta\phi} \\
    \kappa_{\perp r\phi} & \kappa_{\perp\theta\phi} & \kappa_{\perp\phi\phi}
  \end{bmatrix}
\end{aligned}\end{split}\]

where
\(\kappa_{\perp ij}=\kappa_\perp\delta_{ij} - \kappa_\perp b_ib_j\),
and \(i,j\) are \(r,\theta,\phi\). The gradients of
\(\kappa_{ij}\) are


\[\begin{aligned}
  \partial_i\kappa_{\perp ij} & = \delta_{ij}\partial_i\kappa_\perp -b_ib_j\partial_i\kappa_\perp -
  \frac{\kappa_\perp}{B}(b_j\partial_iB_i + b_i\partial_iB_j -
  2b_ib_j\partial_iB)
\end{aligned}\]

We then need to transfer the focused transport equation to the spherical
coordinates. Since we don’t have cross-diffusion terms (spatial and
momentum), we can ignore the momentum diffusion for now.


\[\begin{split}\begin{aligned}
  \frac{\partial F}{\partial t} = & \nabla\cdot(\boldsymbol{\kappa}_\perp\cdot\nabla F) - \nabla\cdot\left[(v\mu\boldsymbol{b} + \boldsymbol{V} + \boldsymbol{V}_d)F\right] \nonumber\\
  & + \frac{\partial}{\partial\mu^2}\left(D_{\mu\mu}F\right) - \frac{\partial}{\partial\mu}\left[\left(\frac{d\mu}{dt}+\frac{\partial D_{\mu\mu}}{\partial\mu}\right)F\right] - \frac{\partial}{\partial p}\left(\frac{dp}{dt}F\right)
\end{aligned}\end{split}\]

The rest is essentially the same as before except for
\(\boldsymbol{\kappa}_\perp\), \(v\mu\boldsymbol{b}\), and the
pitch-angle diffusion terms. We will first need to change \(F\) to
\(F_1=F\sin\theta r^2\) [Jokipii77] [Pei10].
The resulting SDEs are


\[\begin{split}\begin{aligned}
  dr & = \frac{dr}{dt}dt + [P.dW_t]_r \\
  d\theta & = \frac{d\theta}{dt}dt + [P.dW_t]_\theta \\
  d\phi & = \frac{d\phi}{dt}dt + [P.dW_t]_\phi\\
  dp & = \frac{dp}{dt}dt \\
  d\mu & = \left(\frac{d\mu}{dt}+\frac{\partial D_{\mu\mu}}{\partial\mu}\right)dt + \sqrt{2D_{\mu\mu}}dW_\mu(t)
\end{aligned}\end{split}\]

where


\[\begin{split}\begin{aligned}
  \frac{dr}{dt} & = v\mu b_r + V_r+V_{dr} +
  \frac{\partial\kappa_{\perp rr}}{\partial r} + \frac{2}{r}\kappa_{\perp rr}+
  \frac{1}{r}\frac{\partial\kappa_{\perp r\theta}}{\partial\theta}+
  \frac{\cos\theta}{r\sin\theta}\kappa_{\perp r\theta}+
  \frac{1}{r\sin\theta}\frac{\partial\kappa_{\perp r\phi}}{\partial\phi} \\
  \frac{d\theta}{dt} & = \frac{v\mu b_\theta + V_\theta+V_{d\theta}}{r} +
  \frac{1}{r}\frac{\partial\kappa_{\perp r\theta}}{\partial r} + \frac{\kappa_{\perp r\theta}}{r^2}+
  \frac{1}{r^2}\frac{\partial\kappa_{\perp \theta\theta}}{\partial\theta}+
  \frac{\cos\theta}{r^2\sin\theta}\kappa_{\perp \theta\theta}+
  \frac{1}{r^2\sin\theta}\frac{\partial\kappa_{\perp \theta\phi}}{\partial\phi} \\
  \frac{d\phi}{dt} & = \frac{v\mu b_\phi + V_\phi+V_{d\phi}}{r\sin\theta}+
  \frac{1}{r\sin\theta}\frac{\partial\kappa_{\perp r\phi}}{\partial r} +
  \frac{\kappa_{\perp r\phi}}{r^2\sin\theta} +
  \frac{1}{r^2\sin\theta}\frac{\partial\kappa_{\perp \theta\phi}}{\partial\theta}+
  \frac{1}{r^2\sin^2\theta}\frac{\partial\kappa_{\perp \phi\phi}}{\partial\phi}
\end{aligned}\end{split}\]

To calculate \(d\mu/dt\) and \(dp/dt\), we will need


\[\begin{split}\begin{aligned}
  -\boldsymbol{b}\cdot\nabla\ln B & = -\frac{1}{B}\left(b_r\partial_r B + \frac{b_\theta}{r}\partial_\theta B + \frac{b_\phi}{r\sin\theta}\partial_\phi B\right) \\
  \nabla\cdot\boldsymbol{V} & = \partial_r V_r +\frac{2V_r}{r}+
  \frac{1}{r}\partial_\theta V_\theta +
  \frac{\cos\theta}{r\sin\theta}V_\theta +
  \frac{1}{r\sin\theta}\partial_\phi V_\phi
\end{aligned}\end{split}\]

\(b_ib_j\frac{\partial V_i}{\partial x_j}\) is more complicated.


\[\begin{split}\begin{aligned}
  b_ib_j\frac{\partial V_i}{\partial x_j} =
  & b_r^2\partial_r V_r + \frac{b_rb_\theta}{r}\partial_\theta V_r + \frac{b_rb_\phi}{r\sin\theta}\partial_\phi V_r - \frac{b_rb_\theta V_\theta + b_rb_\phi V_\phi}{r} + \nonumber\\
  & b_rb_\theta\partial_r V_\theta + \frac{b_\theta^2}{r}\partial_\theta V_\theta + \frac{b_\theta b_\phi}{r\sin\theta}\partial_\phi V_\theta + \frac{b_\theta^2V_r}{r} - \frac{\cot\theta b_\theta b_\phi V_\phi}{r} + \nonumber\\
  & b_rb_\phi\partial_r V_\phi + \frac{b_\theta b_\phi}{r}\partial_\theta V_\phi + \frac{b_\phi^2}{r\sin\theta}\partial_\phi V_\phi + \frac{b_\phi^2V_r}{r} + \frac{\cot\theta b_\phi^2V_\theta}{r}
\end{aligned}\end{split}\]

Similar for \(b_iV_j\frac{\partial V_i}{\partial x_j}\),


\[\begin{split}\begin{aligned}
  b_iV_j\frac{\partial V_i}{\partial x_j} =
  & b_rV_r\partial_r V_r + \frac{b_rV_\theta}{r}\partial_\theta V_r + \frac{b_rV_\phi}{r\sin\theta}\partial_\phi V_r - \frac{b_r(V_\theta^2+V_\phi^2)}{r} + \nonumber\\
  & b_\theta V_r\partial_r V_\theta + \frac{b_\theta V_\theta}{r}\partial_\theta V_\theta + \frac{b_\theta V_\phi}{r\sin\theta}\partial_\phi V_\theta + \frac{b_\theta V_\theta V_r}{r} - \frac{\cot\theta b_\theta V_\phi^2}{r} + \nonumber\\
  & b_\phi V_r\partial_r V_\phi + \frac{b_\phi V_\theta}{r}\partial_\theta V_\phi + \frac{b_\phi V_\phi}{r\sin\theta}\partial_\phi V_\phi + \frac{b_\phi V_\phi V_r}{r} + \frac{\cot\theta b_\phi V_\phi V_\theta}{r}
\end{aligned}\end{split}\]

For 1D probelms, \(F_1=fp^2r^2\), and the corresponding SDE for
\(r\) is


\[\begin{aligned}
  dr = & \left(v\mu b_r + V_r +
  \frac{\partial\kappa_{\perp rr}}{\partial r} + \frac{2}{r}\kappa_{\perp rr}\right)dt + \sqrt{2\kappa_{\perp rr}}dW_t
\end{aligned}\]

For \(d\mu\) and \(dp\), we will need


\[\begin{split}\begin{aligned}
  -\boldsymbol{b}\cdot\nabla\ln B = & -\frac{1}{B}b_r\partial_r B \\
  \nabla\cdot\boldsymbol{V} = & \partial_r V_r +\frac{2V_r}{r} \\
  b_ib_j\frac{\partial V_i}{\partial x_j} =
  & b_r^2\partial_r V_r - \frac{b_rb_\theta V_\theta + b_rb_\phi V_\phi}{r} + \nonumber \\
  & b_rb_\theta\partial_r V_\theta + \frac{b_\theta^2V_r}{r} - \frac{\cot\theta b_\theta b_\phi V_\phi}{r} + \nonumber \\
  & b_rb_\phi\partial_r V_\phi + \frac{b_\phi^2V_r}{r} + \frac{\cot\theta b_\phi^2V_\theta}{r} \\
  b_iV_j\frac{\partial V_i}{\partial x_j} =
  & b_rV_r\partial_r V_r - \frac{b_r(V_\theta^2+V_\phi^2)}{r} + \nonumber \\
  & b_\theta V_r\partial_r V_\theta + \frac{b_\theta V_\theta V_r}{r} - \frac{\cot\theta b_\theta V_\phi^2}{r} + \nonumber \\
  & b_\phi V_r\partial_r V_\phi + \frac{b_\phi V_\phi V_r}{r} + \frac{\cot\theta b_\phi V_\phi V_\theta}{r}
\end{aligned}\end{split}\]

For 2D problems (\(r-\theta\) plane), \(F_1=fp^2r^2\sin\theta\),
and the corresponding SDEs are


\[\begin{split}\begin{aligned}
  dr & = \left(v\mu b_r + V_r+
  \frac{\partial\kappa_{\perp rr}}{\partial r} + \frac{2}{r}\kappa_{\perp rr}+
  \frac{1}{r}\frac{\partial\kappa_{\perp r\theta}}{\partial\theta}+
  \frac{\cos\theta}{r\sin\theta}\kappa_{\perp r\theta}\right)dt + [P.dW_t]_r \\
  d\theta & = \left(\frac{v\mu b_\theta + V_\theta}{r} +
  \frac{1}{r}\frac{\partial\kappa_{\perp r\theta}}{\partial r} + \frac{\kappa_{\perp r\theta}}{r^2}+
  \frac{1}{r^2}\frac{\partial\kappa_{\perp \theta\theta}}{\partial\theta}+
  \frac{\cos\theta}{r^2\sin\theta}\kappa_{\perp \theta\theta}\right)dt + [P.dW_t]_\theta
\end{aligned}\end{split}\]

where \(P\) has the same form as the one in Parker transport. For
\(d\mu\) and \(dp\), we will need


\[\begin{split}\begin{aligned}
  -\boldsymbol{b}\cdot\nabla\ln B = & -\frac{1}{B}\left(b_r\partial_r B + \frac{b_\theta}{r}\partial_\theta B\right) \\
  \nabla\cdot\boldsymbol{V} = & \partial_r V_r +\frac{2V_r}{r}+
  \frac{1}{r}\partial_\theta V_\theta +
  \frac{\cos\theta}{r\sin\theta}V_\theta \\
  b_ib_j\frac{\partial V_i}{\partial x_j} =
  & b_r^2\partial_r V_r + \frac{b_rb_\theta}{r}\partial_\theta V_r - \frac{b_rb_\theta V_\theta + b_rb_\phi V_\phi}{r} + \nonumber\\
  & b_rb_\theta\partial_r V_\theta + \frac{b_\theta^2}{r}\partial_\theta V_\theta + \frac{b_\theta^2V_r}{r} - \frac{\cot\theta b_\theta b_\phi V_\phi}{r} + \nonumber\\
  & b_rb_\phi\partial_r V_\phi + \frac{b_\theta b_\phi}{r}\partial_\theta V_\phi + \frac{b_\phi^2V_r}{r} + \frac{\cot\theta b_\phi^2V_\theta}{r} \\
  b_iV_j\frac{\partial V_i}{\partial x_j} =
  & b_rV_r\partial_r V_r + \frac{b_rV_\theta}{r}\partial_\theta V_r - \frac{b_r(V_\theta^2+V_\phi^2)}{r} + \nonumber\\
  & b_\theta V_r\partial_r V_\theta + \frac{b_\theta V_\theta}{r}\partial_\theta V_\theta + \frac{b_\theta V_\theta V_r}{r} - \frac{\cot\theta b_\theta V_\phi^2}{r} + \nonumber\\
  & b_\phi V_r\partial_r V_\phi + \frac{b_\phi V_\theta}{r}\partial_\theta V_\phi + \frac{b_\phi V_\phi V_r}{r} + \frac{\cot\theta b_\phi V_\phi V_\theta}{r}
\end{aligned}\end{split}\]

The drift velocity


\[\begin{aligned}
  & \boldsymbol{V}_d=\frac{cpv}{qB}\left\{\frac{1-\mu^2}{2}\frac{\boldsymbol{B}\times\nabla B}{B^2}+\mu^2\frac{\boldsymbol{B}\times[(\boldsymbol{B}\cdot\nabla)\boldsymbol{B}]}{B^3}+\frac{1-\mu^2}{2}\frac{\boldsymbol{B}(\boldsymbol{B}\cdot\nabla\times\boldsymbol{B})}{B^3}\right\}
\end{aligned}\]

Calculations needed for the first term (gradient drift):


\[\begin{split}\begin{aligned}
  & (\nabla B)_r=\partial_r B;\quad
  (\nabla B)_\theta=\frac{\partial_\theta B}{r};\quad
  (\nabla B)_\phi=\frac{\partial_\phi B}{r\sin\theta} \\
  & (\boldsymbol{B}\times\nabla B)_r = B_\theta(\nabla B)_\phi - B_\phi(\nabla B)_\theta \\
  & (\boldsymbol{B}\times\nabla B)_\theta = B_\phi(\nabla B)_r - B_r(\nabla B)_\phi \\
  & (\boldsymbol{B}\times\nabla B)_\phi = B_r(\nabla B)_\theta - B_\theta(\nabla B)_r
\end{aligned}\end{split}\]

Calculations needed for the second term (curvature drift):


\[\begin{split}\begin{aligned}
  & \boldsymbol{C} = (\boldsymbol{B}\cdot\nabla)\boldsymbol{B} \\
  & C_r = B_r\partial_r B_r + \frac{B_\theta}{r}\partial_\theta B_r + \frac{B_\phi}{r\sin\theta}\partial_\phi B_r - \frac{B_\theta^2+B_\phi^2}{r} \\
  & C_\theta = B_r\partial_r B_\theta + \frac{B_\theta}{r}\partial_\theta B_\theta + \frac{B_\phi}{r\sin\theta}\partial_\phi B_\theta + \frac{B_r B_\theta}{r} - \frac{\cot\theta B_\phi^2}{r} \\
  & C_\phi = B_r\partial_r B_\phi + \frac{B_\theta}{r}\partial_\theta B_\phi + \frac{B_\phi}{r\sin\theta}\partial_\phi B_\phi + \frac{B_r B_\phi}{r} + \frac{\cot\theta B_\theta B_\phi}{r} \\
  & (\boldsymbol{B}\times\boldsymbol{C})_r = B_\theta C_\phi - B_\phi C_\theta \\
  & (\boldsymbol{B}\times\boldsymbol{C})_\theta = B_\phi C_r - B_r C_\phi \\
  & (\boldsymbol{B}\times\boldsymbol{C})_\phi = B_r C_\theta - B_\theta C_r
\end{aligned}\end{split}\]

Calculations needed for the third term (parallel drift):


\[\begin{split}\begin{aligned}
  & (\nabla\times\boldsymbol{B})_r =
  \frac{\partial_\theta(\sin\theta B_\phi)}{r\sin\theta}
  - \frac{\partial_\phi B_\theta}{r\sin\theta} =
  \frac{\partial_\theta B_\phi}{r} +
  \frac{\cos\theta}{r\sin\theta}B_\phi
  - \frac{\partial_\phi B_\theta}{r\sin\theta} \\
  & (\nabla\times\boldsymbol{B})_\theta =
  \frac{\partial_\phi B_r}{r\sin\theta}
  - \frac{\partial_r(rB_\phi)}{r} =
  \frac{\partial_\phi B_r}{r\sin\theta}
  -\partial_r B_\phi - \frac{B_\phi}{r} \\
  & (\nabla\times\boldsymbol{B})_\phi =
  \frac{\partial_r(rB_\theta)}{r}
  - \frac{\partial_\theta B_r}{r} =
  \partial_r B_\theta + \frac{B_\theta}{r}
  - \frac{\partial_\theta B_r}{r}
\end{aligned}\end{split}\]
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Implementation Details

This section provides an overview of the code implementation details. The code solves particle transport equations using stochastic differential equations (SDEs). To solve the SDEs, the code uses pseudo particles to sample the particle distributions. The code is designed to be modular and scalable. It is parallelized using MPI and OpenMP and can handle large-scale 3D simulations. The code is organized into several modules, each of which is responsible for a specific aspect of the simulation. See the next section for more details. In general, the code needs to read MHD data, interpolate it at particle positions, evolve the particles, and produce diagnostics.


	Initialization Phase:


	Set up the simulation parameters (simulation_setup_module, mhd_config, and mpi_module).


	Read the MHD data from files (mhd_data_parallel)


	Initialize the particle data (particle_module).


	Initialize diagnostics (diagnostics).






	Main Simulation Loop:


	Inject pseudo particles (particle_module).


	Interpolate MHD data to particle positions (mhd_data_parallel).


	Evolve particles using SDEs and MHD fields (particle_module, random_number_generator).






	Diagnostics and Data Handling:


	Produce diagnostics of the simulation (diagnostics).


	Handle data read/write operations (hdf5_io, mpi_io).









Module Structure

The code is organized into several modules to improve modularity and maintainability. The modules are saved in src/modules directory. These modules are used by src/stochastic_mhd.f90 to perform the simulation. The main modules include:


Note

This section needs to be updated to include more details about each of these modules.




	particle_module: This module contains particle data and the methods to inject, remove, and push particles. All the core algorithms of SDE are implemented in this module.


	mhd_data_parallel: This module contains the data structures and methods to initialize and read MHD simulation data. It also contains the methods to calculate the gradients of these fields and to interpolate the MHD data to the particle positions. Additionally, this module also includes the methods for spatially dependent turbulence correlation length and turbulence amplitude.


	simulation_setup_module: This module contains the methods to set up the simulation parameters, such as the simulation MPI topology, the MHD field configuration, particle boundary conditions, and neighbors of local MPI domains.


	hdf5_io: This module contains the methods to create, open, close, read and write data in HDF5 format. It can deal with data up to 5D and with/without parallel I/O.


	mhd_config: This module contains the methods to read the MHD configuration file and to set up the MHD simulation parameters, including the grid and time stamps if needed.


	constants: This module contains constants used in the simulation.


	diagnostics: This module contains the methods to diagnose the simulations, such as the particle distribution functions, particle data, escaped particle data, and methods for quick checks as the simulation proceeds.


	mpi_io: This module contains the methods to read and write data in parallel using MPI-IO.


	mpi_module: This module contains the methods to set up the MPI topology and to communicate between different MPI domains.


	random_number_generator: This module contains the methods to generate random numbers using the Mersenne Twister algorithm.


	read_confg: This module contains the methods to read the simulation configuration file.


	acc_region_surface: This module contains the methods for the surface to separate the acceleration region and the non-acceleration region. It is useful when we want to isolate certain particle acceleration regions, for example, near the shock front.
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Particle Module

This section provides an overview of the particle module, including the particle data structure, the methods for injecting, removing, and pushing particles.


Particle Data Structure

type particle_type
    integer(i1)  :: split_times     !< Particle splitting times
    integer(i1)  :: count_flag      !< Only count particle when it is 1
    integer(i4)  :: origin          !< The origin MPI rank of the particle
    integer(i4)  :: nsteps_tracked  !< # of tracked steps in MHD data interval
    integer(i4)  :: nsteps_pushed   !< # of steps have been pushed
    integer(i4)  :: tag_injected    !< Particle tag 1 when injected
    integer(i4)  :: tag_splitted    !< Particle tag 2 after splitting
    real(dp) :: x, y, z, p          !< Position and momentum
    real(dp) :: v, mu               !< Velocity and cosine of pitch-angle
    real(dp) :: weight, t, dt       !< Particle weight, time and time step
end type particle_type






	x, y, z: position of the particle in the simulation domain. The positions are in the global coordinate system. For spherical coordinates, x is the radial distance \(r\), y is the polar angle \(\theta\), and z is the azimuthal angle \(\phi\).


	p: momentum magnitude of the particle.


	v: velocity magnitude of the particle. We typically assume non-relativistic particles, so that \(v \sim p\).


	mu: cosine of the pitch angle of the particle.


	weight: weight of the particle. The weight is initialized to be 1.0. When a particle reaches certain momentum, it will be splitted into two identical particles with half of the weight. Due to stochastic nature of the process, these particles will evolve differently after the splitting.


	t: time of the particle. The time is initialized to be the time when particle is injected.


	dt: time step of the particle. The time step is adaptive and is updated at each time step.


	split_times: number of times the particle has been splitted.


	count_flag: flag to count the particle. If the flag is 1, the particle will be counted when accumulating particle distributions. When the flag is negative (-1 to -6), it means that the particle has escaped from one of the six boundaries of the simulation domain (for 2D, -1 to -4 for the four boundaries). When the flag is 0, the particle has negative momentum and will be removed from the simulation.


	origin: the origin MPI rank of the particle. Combined with particle tag_injected and tag_splitted, it can be used to identify the particle for particle tracking.


	nsteps_tracked: number of steps the particle has been tracked in the MHD data interval. It will be reset to 0 at the start of the MHD data interval.


	nsteps_pushed: number of steps the particle has been pushed since they are injected. It is useful when tracking particles. It will accummulate to nsteps_interval and then reset to 0 once the tracked particle is recorded.


	tag_injected: tag of the particle when it is injected. The tag is unique on each MPI rank.


	tag_splitted: tag of the particle after it is splitted. The tag is unique on each MPI rank.





Note

The tag of a particle only unique on each MPI rank. When combined with the origin MPI rank, the particle can be uniquely identified in the simulation. Since tag_splitted is a integer4, the maximum number of particles that one particle can be splitted into is 2^31. If the number of particles exceeds this limit, it means that we probably need to use a larger split_ratio.





Particle Tracking

As described above, we can track particles using the combination of tag_injected, tag_splitted, and origin. The particle tracking is useful for diagnosing how the particles are accelerated and transported. To get the particle tracking information, we need to runt the simulation twice. The first run is a regular run. We need to run the simulation to a certain time frame and dump the particles (also included in the restart files). Then, we need to use a post-processing tool (e.g., a Python script) to select the particles we want to track and save the particle information to a file. The second run is a tracking run. We need to set track_particle_flag = .true. in the input file and set the particle_tags_file to the file that contains the particle information. The tracking run is similar to the regular run except that we need to load the particle_tags_file and use the information to identify the particles we want to track.


	When a particle is injected, the particle is assigned with an origin MPI rank and a tag_injected, which starts from 0 and increases by 1 for each particle injected on each MPI rank. When the particle is splitted, the tag_splitted is assigned to the particle. tag_splitted starts from 1. When one particle is splitted into two particles, each particle has a half of the original weight. One of the two particles has the same tag_splitted as the original particle, and the other has the tag_splitted=tag_splitted_original+2**(split_times-1). The split_times is the number of times the particle has been splitted. The tag_splitted is used to identify the particle after it is splitted. The combination of tag_injected, tag_splitted, and origin can be used to uniquely identify the particle in the simulation.


	The first time we run the simulation, we need to set track_particle_flag = .false. in the input file. The particle information will be saved in the restart files. We can use the restart files to get the particle information. We can use a Python script to select the particles we want to track. For example, we can select the partilces with the highest energies form the particle file using the following script.




tframe = 200
run_name = sde_run_config["run_name"]
fname = "../data/" + run_name + "/restart/particles_" + str(tframe).zfill(4) + ".h5"
with h5py.File(fname, 'r') as fh:
    p = fh["p"][:]
    tag_injected = fh["tag_injected"][:]
    tag_splitted = fh["tag_splitted"][:]
    origin = fh["origin"][:]
    split_times = fh["split_times"][:]
sort_index = np.argsort(p)
psort = p[sort_index]
tag_injected_sort = tag_injected[sort_index]
tag_splitted_sort = tag_splitted[sort_index]
origin_sort = origin[sort_index]
split_times_sort = split_times[sort_index]
nptl_selected = 1000
# select the highest-energy particles
origin_s = origin_sort[-nptl_selected:]
tag_injected_s = tag_injected_sort[-nptl_selected:]
tag_splitted_s = tag_splitted_sort[-nptl_selected:]
split_times_s = split_times_sort[-nptl_selected:]
# trace back to the injected particle
nsplit_max = np.max(split_times_s)
tags_all = np.zeros([nptl_selected, nsplit_max+2], dtype=np.int32)
tags_all[:, 0] = origin_s  # the first col is the origin
tags_all[:, 1] = tag_injected_s  # the second col is tag_injected
for iptl in range(nptl_selected):
    nsplit = split_times_s[iptl]
    if nsplit > 0:
        tags_all[iptl, nsplit+1] = tag_splitted_s[iptl]
        for isplit in range(nsplit, 1, -1):
            if tags_all[iptl, isplit+1] > 2**(isplit-1):
                tags_all[iptl, isplit] = tags_all[iptl, isplit+1] - 2**(isplit-1)
            else:
                tags_all[iptl, isplit] = tags_all[iptl, isplit+1]
# sort by the origin, tag_injected, and then all tag_splitted
ind = np.lexsort(tags_all[:, ::-1].T)
tags_all_sorted = tags_all[ind]
# save the selected particles to a file
odir = "../data/" + run_name + "/particle_tracking/"
mkdir_p(odir)
fname = odir + "tags_selected_01.h5"
with h5py.File(fname, 'w') as fh:
    fh.create_dataset("tags", tags_all_sorted.shape, data=tags_all_sorted)






	The second time we run the simulation, we need to set track_particle_flag = .true. in the input file. We need to set the particle_tags_file to the file that contains the particle information. The tracking run is similar to the regular run except that we need to load the particle_tags_file and use the information to identify the particles we want to track.


	The simulation will output tracked particle information every MHD intervel. The files are saved in particle_tracking under the diagnostic directory. We can get all the particle information using a script like the following.




fdir = "../data/" + run_name + "/particle_tracking/"
ts, te = 51, 200
nframes = te - ts + 1
fname = fdir + "particles_tracked_" + str(ts).zfill(4) + ".h5"
with h5py.File(fname, "r") as fh:
    x = fh["x"][:, :]
nptl_tracking, nsteps_tracked = x.shape
t = np.zeros([nptl_tracking, nsteps_tracked*nframes])
x = np.zeros([nptl_tracking, nsteps_tracked*nframes])
y = np.zeros([nptl_tracking, nsteps_tracked*nframes])
p = np.zeros([nptl_tracking, nsteps_tracked*nframes])
tag_splitted = np.zeros([nptl_tracking, nsteps_tracked*nframes])
for tframe in range(ts, te+1):
    fname = fdir + "particles_tracked_" + str(tframe).zfill(4) + ".h5"
    it1 = (tframe - ts) * nsteps_tracked
    it2 = it1 + nsteps_tracked
    with h5py.File(fname, "r") as fh:
        t[:, it1:it2] = fh["t"][:, :]
        x[:, it1:it2] = fh["x"][:, :]
        y[:, it1:it2] = fh["y"][:, :]
        p[:, it1:it2] = fh["p"][:, :]
        tag_splitted[:, it1:it2] = fh["tag_splitted"][:, :]





To plot one particle trajectory, we can use, for example,

iptl = 100
ind = t[iptl, :] > 0
plt.plot(x[iptl, ind], y[iptl, ind])
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